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PREFACE 

In 1955, the team which has become the Marshall Space Flight 
Center (MSFC) began to organize a research program within its 
various laboratories and offices. The purpose of the program was  
twofold: first, to support existing development projects by research 
studies and second, to prepare future development projects by ad- 
vancing the state of the art of rockets and space flight. Funding for 
this program came from the Army, A i r  Force, and Advanced 
Research Projects Agency. The effort during the first year was 
modest and involved relatively few tasks. The communication of 
results was,  therefore, comparatively easy. 

Today, ten years later, the double purpose of MSFC's research 
program is still the same. Funding for  the program now comes 
from NASA Program Offices. The present yearly effort represents 
major amounts of money and hundreds 'of tasks. The better part of 
the money goes to industry and universities for  research contracts. 
However, a substantial research effort is conducted in house at the 
Marshall Center by all of the laboratories. The communication of 
the results from this impressive research program has become a 
serious problem by virtueofits  very voluminous technical and sci- 
entific content. 

The Research Projects Laboratory, which is the group respon- 
sible for management of the consolidated research program for the 
Center, initiated aplan to give better visibility to the achievements 
of research at  Marshall ina form that would be more readily usable 
by specialists, by systems engineers, and by NASA Programoffices 
for management purposes. 

To initiate the plan, monthly Research Achievements Reviews 
have been established, repetitive' over a yearly cycle, with each 
review covering one or  two fields of research. These verbal re- 
views a r e  documented in the Research Achievements Review Series. 

E rnst  Stuhlinger 
Director, Research Projects Laboratory 

These papers presented October 28. 1965 
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INTRODUCTiON TO RESEARCH ACHIEVEMENTS REVIEW ON 
ASTRODY NAMlCS OPTIMIZATION THEORY AND GUIDANCE THEORY 

by 

Dr .  E. D. Geissler* 

The three subjects discussed in this review, 
guidance theory, optimization theory, and astrody- 
namics, a r e  very closely related. They deal with 
trajectory shaping and a r e  of central importance in 
the activities of the Aero-Astrodynamics Laboratory. 
Since they a r e  strongly concerned with mathematical 
concepts and methods, these subjects are not easy to 
present in a satisfactory fashion to an  audience which 
is a fairly mixed composition with respect to back- 
ground and interests. Let it be clearly understood 
that these papers a r e  directed to the nonspecialist; 
complete papers of particular use to specialists a r e  
available o r  are in preparation. 

We have selected somewhat different approaches 
in the three papers towards the subject matter, rang- 
ing from a fairly thorough description of one particu- 
lar guidance concept in the first, to a more general 
discussion of the status of mathematical tools in 
optimization theory in the second, and finally to a 
description of some examples of classes of trajecto- 
r ies  in astrodynamics with primary appeal toxeo- 
metrical visualization. Thus, we have not attempted 
to really systematically survey all activities related 
to the subject matter. 

The conceptual development of guidance schemes 
at MSFC is the primary responsibility of the Aero- 
Astrodynamics Laboratory, whereas our Astrionics 
Laboratory is the primary agent for the implementa- 
tion and mechanization of such schemes, i. e.  , the 
transformation of equations into a physical set of 
operable, functional equipment. This obviously re- 
quires very ciose cooperdiion 'uaiwaan iiie i w u  iabu- 
ratories to have the full  benefit of feedback of practi- 
cal viewpoints and experience into the theoretical 
framework. This cooperation has been effective 
over many years in an  exemplary fashion and was one 
important factor for the very successful accomplish- 
ment of our guidance systems in actual flights. 

A fairly major change in our guidance philosophy 
took place at our  agency a few years ago at the incep- 
tion of the Saturn space vehicle program. The 
switchover f rom ballistic rockets with more limited 
range and more uniformly defined trajectories to 
space vehicles, which call for more variety of 

trajectory shaping, and the availability of a new com- 
puter technology, which permits rather large scale 
digital computations aboard a flying vehicle, induced 
us  to deviate from the old A -minimum scheme that 
was used successfully on various vehicles like 
Redstone, Jupiter, Pershing, etc.., and that was 
tailored to use analog equipment with prime emphasis 
on simplicity and accuracy. The new concept, which 
we call adaptive guidance, aims at generality in view 
of the many different mission geometries of multi- 
stage space vehicles, flexibility in view of frequent 
changes in physical characteristics of vehicles prior 
to flight as well as in flight, and performance opti- 
mization in the presence of major physical disturb- 
ances (e. g., engine-out cases) ,  plus of course, 
accuracy of achievement of final end conditions. 
Various mathematical approaches are feasible toward 
accomplishment of these goals, and several have been 
explored in some detail at MSFC. Two of 'them, the 
polynomial adaptive guidance and the iterative guid- 
ance scheme, have been carried through the successful 
application in fullscale Saturn I earth orbital flights. . 

The selection of the iterative guidance scheme 
for the follow-on Saturn IB and Saturn V flight pro- 
grams has been made based on decisive advantages 
in  terms of flexibility with regard to changing physi- 
cal characteristics, i. e., switchover to alternate 
mission for engine-out cases and easy adaption to a 
wide variety of complex three-dimensional mission 
profiles with a minimum of previous ground compu- 
tation. A good description of both adaptive guidance 
systems has been given by Dr.  W. Haeussermann at 

first paper by M r .  Clyde Baker, Chief of the Astro- 
dynamics & Guidance Theory Division, complements 
Dr. Haeussermann's paper by sketching the various 
mathematical options towards our adaptive guidance 
scheme and describing in somewhat more detail the 
particular mathematical features of the iterative 
guidance scheme. For  more details, I refer you to 
the third issue of the semiannual Aero-Astrodynamics 
Research Report. M r .  Baker does not go into a com- 
parison of this s,cheme with other similar schemes 
developed independently and approximately concur- 
rently at  M U ,  STL, and Aerospace Corporation. 
Suffice it to say that we have studied these other 

~e Auguai AiAA X e G L i u g  at Zii F Z G ~ ~ C ~ C G .  2;: 

~~~ ~ 

*Director,  Aero-Astrodynamics Laboratory. 



DR. E.D. GEISSLER 

methods and have found, in spite of many similarities, 
some specific advantages of our iterative guidance 
scheme. 

There is a very complex pattern of interactions 
between the theoretical scheme with 

a. The particular mission requirements in 
te rms  of mission profile geometry and operational 
constraints and alternate mission requirements for 
engine out, etc. 

b. Hardware considerations such as trade-offs 
between computer memory and complexity of equa- 
tions and frequency of onboard computations. 

c . Practical computational requirements such 
as need of preflight computations in view of para- 
metric changes. 

All  of this demonstrates the extreme importance 
of a close marriage between the guidance theory 
development and the system development. 

In view of this, a continuation of support by 
OART, NASA Headquarters for advanced guidance 
studies at MSFC, appears to us very desirable and 
important. We hope that this review may be of some 
help to underscore the value of these efforts. 

With respect to the second paper by Mr. 
Dearman, on optimization theory, I would like to 
make the following observations: The application of 
optimization theory to trajectory shaping only is  
discussed in this paper, and this subject is obviously 
closely related to guidance theory. Most of the con- 
cepts and methods a re  equally applicable to other 
problems, in particular to control problems. Several 
studies related to this field a re  carried on by and 
under sponsorship of the Aero-Astrodynamics 
Laboratory. 

An attempt has been made to describe the sub- 
ject without use of equations. A t  the same time we 
did not mean to oversimplify the matter for the sake 

of populariLation. Since optimization theory is  con- 
cerned with subtle points, we cannot expect a very 
easy paper; however, I believe Mr .  Dearman suc- 
ceeded in producing a very lucid presentation on his 
subject. The impression may be gained from his 
paper that in view of the shortcomings of the present 
state of optimization theory, no answers can be 
found to many practical trajectory problems. In 
many cases engineering intuition and/or extensive 
numerical work (parametrical treatment) can 
substitute for more rigorous mathematical methods 
and produce practically acceptable optimum o r  near 
optimum solutions. 
theory in such cases is more for reduction of com- 
putational effort and more direct assurance of opti- 
mality of a solution. 

The motivation for improving 

The final paper on astrodynamics by Mr .  
Schwaniger is  probably the most acceptable one to 
those not familiar with the subject matter since it 
describes largely geometric properties of classes of 
trajectories. 
discussion of computational tools. While the general 
trend in engineering i s  towards more abstraction and 
complexity due to improvements in theory, availabil- 
ity of powerful computers, and increasing complexity 
of problems and capability for thorough optimization, 
there is still a need and a place for simplification 
especially for survcys as aids in mission synthesis. 
This is  not only to make economical use of computers, 
but also to gain insight into characteristic features of 
solutions which may otherwise escape the attention or  
grasp of the investigator. There has been a creative 
interplay throughout the history of physical science 
between the intuitive approach proceeding from 
specific cases to generalization (inductive) and the 
abstract approach which typically deduces individual 
cases from general theory (deductive) ; we believe 
there wi l l  be a continued need for this dual approach. 

Lack of time did not permit much 

The term astrodynamics has been historically 
used by astronomers for dynamic analysis of the 
motion of heavenly bodies; the prime change has been 
the recent emphasis of powered trajectories, i .  e . ,  
bodies under the influence of forces other than gravity. 

2 



SATURN GUIDANCE CONCEPTS 
bY 

SUMMARY 

Clyde D. Baker.:: 

The basic problem in space guidance is to de- 
velop some relatively simple way to compute the 
direction of thrust at  points along a trajectory which 
wil l  permit meeting the desired terminal conditions 
of the trajectory. The development of such a guid- 
ance law or  guidance scheme usually involves some 
method to approximate the calculus of variations 
solution which maximizes payload. 

Four such approximations a r e  discussed in this 
paper. 
to a closed loop steering function, 
od, which is actually used for Saturn guidance, is a 
closed form solution of the calculus of variations 
problem using a simplified earth model. 

Three a re  polynomial type approximations 
The fourth meth- 

GLOSSARY 

Adaptive guidance mode - This means that, a t  
each point in the flight, the choice of steering angle 
made at that point is always the one which tends to 
maximize the payload delivered to the required end 
condition of the trajectory problem, 

Iterative guidance mode - 

Series reversion method - I 
Four methods of 
obtaining adap- Guidance function expansion 

-- -+I.,.,a 
lllr UIVU I tive guidance. 

Least  square curve fitting - J 

A minimum guidance - A guidance mode to con- 
tinuously correct  the steering angle to force the 
vehicle to stay on a predetermined trajectory. 

F /m - Thrust to mass ratio 

Isp - Specific Impulse - this is the ratio of 
thrust measured in kg to kg of propellant consumed 
per second. 

Mixture ratio shifts - Change in propellant 
management during flight affecting both thrust level 
and mass flow of propellant. 

Open loop steering - Synonymous with steering 
without feedback 

Time-to-go - I s  that time remaining before 
thrust cut-off in a flight. 

N x - Principal part  of angle x such that';; plus an 
additional small angle i s  equal to the actual steering 
angle X .  

SECTION 1. INTRODUCTION 

This discussion deals with the research work 
that has been carried out for the development of 
guidance concepts for  the Saturn vehicles. This 
work was motivated by the development of new mathe- 
matical techniques for maximization of payloads 
through optimization methods and by the development 
of digital computers to replace analog computers as 
onboard hardware. It was also obvious that space 
trajectories would require greater flexibility to cope 
with sudden changes such a s  engine out conditions 
and that more flexibility must be permitted in the 
selection of flight profiles. 

We a re  primarily concerned with the iterative 
guidance law developed for  Saturn vehicles to meet 
these new requirements of space-age guidance. 
However, we wi l l  briefly discuss some of the other 
techniques which were studied in parallel during the 
development of the iterative guidance mode. 

A typical space guidance problem is that of 
placing a space vehicle into a specified circular 
orbit about the earth. This particular problem will 
be emphasized a s  a typical problem. The iterative 
guidance law wil l  achieve a wide variety of other 
guidance tasks such as injecting a spacecraft into a 
specified lunar orbit  o r  soft land a vehicle a t  a pre- 
selected point on the surface of the moon. The dis- 
cussion wi l l  be limited to the problem of injection 

* Chief, Astrodynamics and Guidance Theory Division, Aero-Astrodynamics Laboratory, 
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into a circular orbit about the earth, because the 
basic principles involved are the same for all speci- 
fic applications. 

This problem is illustrated in  Figure 1. 

DESIRED EARTH ORBIT 

I ,. 
SURFACE OF EARTH 

FIGURE 1. CIRCULAR EARTH ORBIT 

Trajectory #i is a nominal trajectory, and trajectory 
# 2  is one in which some perturbation has occurred 
during the flight. The guidance problem in both 
cases is to choose the angle x between the longitudi- 
nal axis of the vehicle and some reference direction 
so that the vehicle enters the desired orbit. Nor- 
mally, it i s  additionally required that the vehicle be 
placed into the orbit with maximum payload or, what 
is equivalent, minimum burning time. Obviously, 
the steering angles in trajectories #i and #2 will  be 
different because of the different forces acting on the 
vehicle during the flight caused by the perturbation 
assumed in trajectory #2. 

Guidance is active only after the vehicles a r e  
out of the atmosphere when the aerodynamic forces 
are zero. The flight during the f i r s t  stage, shown 
by the dotted lines, is controlled by the autopilot, 
and the main concern during this portion of the flight 
is to keep the aerodynamic forces from destroying 
the vehicle. This discussion is concerned with the 
second stage only when guidance is active. This 
portion of the trajectory is shown by the solid line. 

solutions for  a given problem. Somewhat the reverse  . 
is true in the development of a guidance concept. 

For  example, by means of the calculus of varia- 
tions, a precise mathematical tool exists for the cal- 
culation of the steering angles which wil l  guide the 
vehicle into the desired orbit. However, there a r e  
two principal difficulties with the calculus of varia- 
tions solution. 

First of all, the numerical calculations required 
to establish the steering angles a re  f a r  too complex 
to be carried out aboard the vehicle. The solutions 
of the calculus of variations equations require a com- 
puter the size of the IBM 7094, which obviously can- 
not be flown with the vehicle. 

In the second place, the solution of the calculus of 
variations equations does not provide the steering law 
in feedback form. This las t  comment deserves some 
clarification. 

The form of the solution of the calculus of varia- 
tions to the problem stated is to provide the steering 
angles x a s  a function of time. Furthermore, to ob- 
tain this solution, a l l  physical and environmental 
conditions which wi l l  occur during the flight must be 
known before the launch takes place. 

If the vehicle weight during the actual flight is 
different from that assumed'for the determination of 
the steering angle, the steering wil l  be incorrect. 
The same is true if the engine Isp is not nominal or 
winds during the first stage a re  different from those 
assumed for  the guidance calculations. In fact, the 
steering law w i l l  be incorrect if any of the informa- 
tion assumed for the calculations a re  different from 
those actually encountered during the flight. 

What is needed is a closed loop feedback steering 
law. This means that the steering angles should not 
be functions of time alone as  the calculus of variations 
solution provides. The steering law should be pro- 
vided a s  a function of position, velocity, and accel- 
eration, i. e., onboard measurable quantities. Then 
if  the vehicle experiences different forces during 
flight from those which were predicted, there is a 
basis to take these variations into account and to 
correct  the steering angles accordingly. 

SECT ION I 1. THE GU IDANCE PROBLEM 
SECTION I II. FOUR GUIDANCE CONCEPTS 

The development of a guidance concept for  the 
problem just illustrated is somewhat unusual a s  an 
engineering problem. A typical difficulty in engi- 
neering is to find more accurate mathematical 

Four different concepts wi l l  be discussed for re- 
ducing the amount of onboard computations and ob- 
taining a closed loop steering law. These concepts 
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* have been studied both in-house and by MSFC contrac- 
tors.  All four have in common an approximation to the 
calculus of variations solution. 
(I) series reversion method, ( 2 )  guidance function 
expansion, ( 3 )  least  square curve fitting, and (4) 
iterative guidance mode, a r e  shown schematically in 
Figure 2 and all are referred to a s  being adaptive. 
This simply means that at  each point in the flight, the 
choice of the steering angle made at that point is al- 
ways the one that tends to maximize the payload de- 
livered to the required end conditions of the trajectory 
problem. 

These four concepts, 

L A P T l V E  GUIOANCE CONCEPTS 1 
" POLYNOWVL' CONCEPTS 'ITERATIVE" CONCEPTS 

ITERATIVE GUIDANCE 

I SERIES REVERSION 
YETHOD 

INDIRECT APPROACH 

WIDANCE FUNCTlOll 
EXPANSION METHOD 

FIGURE 2. GUIDANCE CONCEPTS 

Three of these concepts result in polynomial type 
expansions of the steering angle as functions of the 
current position, velocity, and acceleration of the ve- 
hicle. The fourth concept (i terative),  which is actual- 
ly the one used on Saturn vehicles, is an approximate 
explicit solution to the trajectory optimization problem. 

Because all four of these concepts have their 
bases in the calculus of variations solution, this solu- 
tion will be briefly outlined to provide a background 
for the modifications which have resulted in the four 
concepts which a re  of primary interest here. 

To simplify the discussion of the mathematical 
equations, a somewhat simplified version of the origi- 
nal problem of injecting into a circular earth orbit 
will be desired. Consider then on Figure 3 the prob- 
lem of the flight of a space vehicle on a flat, nonrotat- 
ing earth where the gravitational vector is constant 
and always parallel to the y-axis. The object of the 
guidance system is to deliver the vehicle from the 

Y 

N l N l N U Y  T I N E  
x = x c  y = y c  

FIGURE 3. A SIMPLIFIED TRAJECTORY 

launch site shown at the origin of the x, y coordinate 
system to a fixed position in space with a fixed ve- 
locity. This is to be accomplished in the shortest 
possible time with a fixed thrust magnitude and fixed 
burning rate  of the propellant. The angle x as  shown 
on the slide is the only choice to be made. 

The equations of motion of this simplified trajec- 
tory are shown below the trajectory. Applying the 
calculus of variations to this problem, the solution for 
x is given in Figure 4. 

p3 a t b t  
t a n  x (t)  = - = - 

PI I t c t  

a, b,c a r e  c o n s t a n t s  

FIGURE 4. CALCULUS OF VARIATIONS 
SOLUTION FOR x 

Mathematically, the equation for tan x contains four 
unknown quantities, a, b, c y  and evaluated at en- 
gine cutoff time. There are  four terminal conditions 
to be fulfilled, two position coordinates, and two ve- 
locity coordinates. By integrating the equation in 2 
and y, it is then possible to obtain four equations in 
the four unknowns. These equations, of course, can 
be solved by some means to obtain values of a, b, c, 
and tc. Af t e r  some manipulations these values can be 
used to obtain the trajectory illustrated in Figure 3. 
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Here again, for emphasis, observe that the angle x 
depends only upon time during the flight since the 
constants a ,  b, and c must be calculated before the 
equations of motion may be integrated. Thus the 
angle x would remain the same function of time re- 
gardless of how thrust o r  mass flow (propellant) 
changed during flight. This is one undesirable aspect 
of the calculus of variations solution. 
desirable feature is  that a high speed computer is  re- 
quired to obtain the values of a ,  b, and c in a reason- 
able length of time. 

The other un- 

Thus the calculus of variations type solution pro- 
The steering angle vides an open loop type guidance. 

is obtained as a function of time which remains the 
same regardless of what disturbances occur during 
the flight. For disturbed flights, then, the COV solu- 
tion trajectory will not provide the desired accuracy 
of the terminal trajectory conditions. The discussion 
will be directed toward describing four techniques for 
converting the COV solution into a true feedback sys- 
tem which will provide the desired accuracy when 
disturbances are present. The first one to be de- 
scribed is the series reversion method. 

B. THE SERIES REVERSION METHOD 

The basic idea of the ser ies  reversion method 
is to obtain the values of a, b, c ,  and tc in terms of 
the instantaneous vehicle coordinates of position, ve- 
locity, and acceleration. This is illustrated on Fig- 
ure 5. 

o = f ,  (.x, x, y, y, F/m) 

b = f 2 ( x ,  x, y, y, F/m) 

c = f,(x, x, y, y, F/m) 

FIGURE 5 .  SERIES REVERSION SOLUTION 

A l l  of the mathematical details of this method are 
of little interest here. Briefly stated, however, the 
process involves expressing the cutoff position, ve- 
locity, and time in a set of Taylor's Series involving 
the current position, velocity, and acceleration with 
the values of a, b, c,  and tc. By a simultaneous re- 
version of this se t  of Taylor's Series which involves 

a very considerable amount of work, it is possible 
to obtain the equations shown on Figure 5. Explicit 
forms of these equations a r e  shown on Figure 6. 

o = a, t o,x  t o,y t o , i  t a 4 y  t 0 ~ x 2  t o,y* t o,i' t a,y* t 

c = c, t c,x t c*y  t ... t 

FIGURE 6. SERIES REVERSION 

These equations may then be evaluated to obtain 
the constants a, b, c,  and t 
easily obtained from these constants. 

and the angle x is then 
C' 

The advantage of such a representation of the 
angle x is that a s  the actual trajectory deviates from 
the expected trajectory, the values of a ,  b, c,  and 
t change accordingly to guide the vehicle back to the 
&sired end points and do this in the minimum amount 

'of time. The disadvantages of such a scheme are 
several. 

Firs t ,  there ' is  a tremendous amount of work 
involved in the in the calculation of the equations 
shown on Figure 5. In the second place, these equa- 
tions must be reevaluated for each new set of terminal 
conditions sincc the actual cutoff values of position 
and velocity a re  contained as  parameters in the sys- 
tem of equations. 

Finally, the number of terms required in the 
Taylor's Series expansion described previously a re  
likely to be so high that the computer storage prob- 
lem becomes prohibitive. 

C. THE GUIDANCE FUNCTION EXPANSION 
METHOD 

The guidance function expansion method is in 
many respects similar to the series reversion tech- 
nique and has essentially the same advantages and dis- 
advantages. A brief description of this method is 
given leaving out most of the mathematical detail. 

The basic concept again is to devise some means 
to calculate the values of a ,  b, c, and t~ as functions 
of the vehicle current position, velocity, and acceler- 
ation. Figure 7 shows the form of the solution of the 
guidance function expansion method. 
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t 

t 

FIGURE 7. GUIDANCE FUNCTION 
EXPANSION SOLUTION 

Observe that this method also involves an expan- 
sion of the values of a, b, c, and 
Series. However, in this case, the expansion is 
carried out about some preselected point on a nominal 
optimal trajectory. This point is identified by the 
coordinates X% , & , p , e , and e .  There are sev- 
e ra l  variations of the guidance function expansion 
method which selected several points about which to 
carry out the series expansion, o r  in one case, the 
reference point is allowed to move continuously along 
the curve. 

into a Taylor's 

Much work has been devoted to the study of the 
first two methods just described, but neither has ever 
been carried out to the point of obtaining an actual 
steering equation. The number of te rms  required in 
the Taylor's Series is likely to be so large as to be 
prohibitive. 

D. THE LEAST SQUARE CURVE FIT 

The least square curve fitting technique is 
probably the simplest of the four methods conceptual- 
ly and will now be explained. The equation which is 
desired as an end product of the curve fitting tech- 
nique is shown on Figure 8. Here, the idea is to ex- 
press  the steering angle x directly in terms of the 

products of these coordinates. 
--.-:+:-- y v - . w * - * . ,  rrnlnnikr . ----*-J , ---- nnrl -- onnalorntinn, - -__-  tncefher with 

x = a o t a , i t a 2 y + a 3 x  t a 4 y  t a , ( F / m ) t a 6 i 2 t  

FIGURE 8. THE LEAST SQUARE CURVE FITTING 

The coefficients of this polynomial, ai, (i = 1, 
2, 3 . . . 16, . . . ) a re  obtained by precalculating 
optimal trajectories with various types of disturb- 
ances deliberately introduced into the trajectories. 
Then from a sampling of the steering angles associated 
with the values of the coordinates on each of these 
trajectories, a least  square curve fit is made which 
minimizes the sum of the squares of the e r ro r s  in the 
angle x at each of the points selected in the curve fit. 

This method appears to be more of an art than a 
science for several  reasons. A number of choices 
must be made somewhat arbitrarily. 
the number of te rms  to include in the equation, the 
actual te rms  which will appear in the equation, the 
number of trajectories which should be precalculated 
to include in the least  square curve fitting process, 
and finally some choice must be made of the points to 
be utilized from a given trajectory. There has not 
been a clear answer, and there is still none as  to how 
these choices should be made. Some people have been 
successful in making these selections so that adequate 
steering functions have been computed by this pro- 
cess. The flights of SA-6 and SA-7 were guided by 
steering functions generated in this manner, and the 
accuracy obtained was certainly satisfactory. 

These include 

Perhaps the biggest fallacy in the technique, how- 
ever,  lies in the tacit assumption that the polynomial 
which produces the least  sum of squares of e r ro r s  in 
expressing the angle x as a function of the coordinates 
also provides the best steering law. Since this is not 
true, an additional constraint was placed on the curve 
fitting, that the partial derivatives of the angle x with 
respect to the coordinates in the curve f i t  would match 
the partial derivatives of the angle x with respect to 
the coordinates obtained directly from the calculus of 
variations. 

This constraint vastly improved the steering law 
when guidance was applied to a single stage only. 

However, the additional complexities imposed 
upon the curve fitting by multiple stages and the intro- 
duction of the step mixture ratio shift, together with 
the requirements of continuously variable launch 
azimuths, caused the decision to drop the polynomial 
curve fits in favor of the iterative guidance mode 
which will now be discussed. 

E. THE ITERATIVE GUIDANCE MODE 

Because the iterative guidance mode has been 
successfully flown on SA-8, 9, and 10 and shows 
promise of providing the accuracy, performance 
optimization, and flexibility for future Saturn vehicles, 
it will be discussed in considerably more detail than 
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the previous three. The basic problem remains to 
devise some means to express the constants a, b, c ,  
and tc as functions of the current coordinates of the 
vehicle. In the three previously described techniques , 
these constants were obtained by series representa- 
tions. The methods differed principally in the way 
in which the coefficients of the ser ies  were derived. 
The iterative guidance techniques solves fo r  these 
values of a ,  b, c ,  and tc in a basically different way. 

To illustrate the iterative guidance concept, con- 
sider once again the problem of placing a vehicle in 
a desired circular orbit around the earth. The con- 
cern will only be that the circular orbit is obtained, 
and no conditions will be placed upon the exact point 
a t  which the vehicle enters the circular orbit. Re-  
moval of the constraint on the point at  which injection 
occurs makes possible some simplification of the 
guidance law to obtain this orbit. In this case the 
guidance law can be wri t ten a s  shown in Figure 9. 

tan x 1 a t b t  

X N 
N A + 8 1  

FIGURE 9. ITERATIVE GUIDANCE LAW 
FOR CIRCULAR ORBIT 

This law is only an approximation even for the 
flat earth model, but it is an excellent approximation. 
A further simplification is  made that the angle x it- 
self may be expressed as a linear function of time 
where this linear function is different from the linear 
law obtained for tan x. 

This expression for x = ( A  + Bt) may now be sub- 
stituted into the equation of motion as  shown on 
Figure 10. These equations appear somewhat com- 
plicated, but there are  only two essential simple facts 
that should be noted about these equations. F i r s t  of 
all, they contain only three unknowns. These a r e  A, 
B, and tc. A l l  other information is either known o r  
measured during flight. ,The second significant thing 
to note is  that there are only three conditions to be 
satisfied at  injection. These a r e  %, f c ,  and yc. The 
fourth coordinate xc has been eliminated by eliminat- 
ing the constraint on the range at which injection 
takes place. 

This means tha t  if some relatively simple way 
can be found to solve these three equations in three 
unknowns, the guidance problem will be solved. The 
8 

y = sin ( A t  B t )  - g  

t 
'1 cos ( A +  B t ) d t  t f ,  i c = / o  m 

i c = / o  " m sin ( A t  B t ) d t  - 0 1 ,  + 5, 

t t  x~= / ,~ / ,  COS ( A +  B t ) d t '  + i O t c  + x q  

t t  0 1; 
y c = / o c / o  sin ( A  + B t ) d t '  -2 + g o t c  Yo 

FIGURE IO. EQUATIONS OF MOTION 
AND THEIR INTEGRALS 

remainder of the discussion will be concerned with 
the problem of solving these equations with an indi- 
cation of what impact on accuracy and performance 
results from the necessary simplification made to 
solve the equations. 

In order to solve the equations, one additional bit 
of information from the calculus of variations is use- 
ful. This fact is that if the only conditions to be ful- 
filled at  cutoff time are  velocity conditions, that is, 
only 2, and yc a re  prescribed at  cutoff time, then the 
calculus of variations states that the steering angle 
under these conditions is a constant. 

This fact has two important consequences. A s  
a f i r s t  step in the solution of the three simultaneous 
equations, it is possible to satisfy the velocity con- 
ditions with a constant steering angle which makes the 
integration of the equations of motion trivial. Thus 
the solution for required velocity has temporarily 
been separated from the problem of calculating the 
required altitude, and the equations of motion have 
been greatly simplified. 

The equations of motion for a fixed steering 
angle together with their first integrals a re  shown 
on Figure 11. 
for x as shown on Figure 12. It should be noted that 
at  this point in the solution, the value of tc is  not 
known in the equations for tan x. 

The last two equations can be solved 

The next step in the solution is  to satisfy the 
additional co5dition that yc equals the required value. 
The value of x is the principal part of the original 
angle x = A + Bt. 
Figure 13. 

Let this be rewritten a s  shown in 
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m =  m, - m t  
F 
m ii = - cos 2 

.. F y = - s i n z - g  m 

F 
t i l  

i ,  =- -  In (m, - m t c )  c o s y  t i o  

FIGURE 11. CONSTANT STEERING 
ANGLE EQUATIONS 

i c  4- 9 t c  - 30 

i, - i o  
tan = 

FIGURE 12. CONSTANT STEERING ANGLE x 

FIGURE 13. SEPARATED FORM OF x 

This expression is substituted into the equations of 
motion to obtain the equations as shown on Figure 14. 

s i n ( f -  K ,  + K 2 t )  F 
Y = -  m 

FIGURE 14. EQUATIONS OF MOTION 

By making the assumption that -K, + K2 t is a small 
angle so that the sine of the angle is  equal to the angle 
and that the cosine of this angle is equal to one, these 
equations may be integrated in closed form. 
closed form solutions a re  indicated on Figure 15. 
These equations satisfy all of the terminal conditions. 

These 

FIGURE 15. CLOSED FORM SOLUTIONS 
FOR ic, fc ,  xc, Y, 

These equations appear to be essentially the 
same as similar equations which have appeared in 
the description of some of the previous guidance con- 
cepts. 
algebraic representations can be obtained for each of 
them. 
solved when the terminal conditions are changed. In 
the previous guidance concepts these representations 
were given in numerical form only. 

They are  in principle very different because 

This means that they do not have to be re- 

The significance of the equations of Figure 15 is 
that their solutions can be programmed on a relatively 
small computer and that the values of Ki, K2, tc, and 
x can be solved as functions of the current vehicle 
coordinates. Figure 16 shows the explicit form of 
the equations on Figure 15. 

1 = vel: A '  = V, In [ I - ( T / ~ ) ]  

A 2  = AI I -VET 
A3 = -A2 t T I I  

A 4 1  A 3 1  - [ (V,T2)/2] 

+T i I A 3  + V 0 T l l 9 ~  

to = Xo cor (to t 
90 = X, sin (+o t +TI t yo cos Mot ++ 
dvO2 = (i,-iO-g* Tsin +*12 t ( i T - i o + g *  T cos +a12 ww f w  T 

A V ~  = -ve In [ I - ( T / ~ ) ]  

pc : ton- '  [ ( i T - i o + g a T  ~ o r + * ~ l ( ~ ~ - ~ ~ - ~ ' T r i n + * . ) ]  

P A 3  cos 4 Q = A 4  cos 1 

R = OT -f- i0T+ 

K I =  ( A 2 R ) I ( A l Q - A 2 P )  K 2 '  ( A I R l / ( A I Q - A 2 P )  

- y o  sin CCt +T) and similarly for velocity 

1 * I P 0 + S T l  + * =  ++T 

F 

I 
c 0' T 2  coa +* - A3 sin p 

xe ye - ( K I - K z t I  x = xc - + o - h  
Chtcli velocity or T fw cutoff. Stop computotion of K I  and K 2  .hen T k c o n e s  small. 

I T  os shown In lhere  equations = 1,. lime of culoff. used in  leil.) 

FIGURE 16. ITERATIVE GUIDANCE EQUATIONS 
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1. Accuracy Considerations. Some explana- 
tion must now be given of the accuracy to be expected 
of the iterative guidance concept. 
tions have been made to arrive at  the closed form 
solutions of the equations presented. 
earth model chosen was a flat, nonrotating earth. 
After that several small angle approximations were 
made to simplify the integration of the equations of 
motion. With the aid of Figure 17, some of the ef- 
fects of these simplifications will be interpreted. 

Many approxima- 

First of all, the 

DESIRED EARTH ORBIT 

4 INITIATION OF GUIDANCE 

SURFACE OF EARTH 

FIGURE 17. ITERATIVE GUIDANCE 
MODE COMPUTATIONS 

At the initiation of guidance a s  shown in the 
figure, an initial value of the steering angle x is 
computed. This angle is not precisely correct be- 
cause of the many simplifications. 
used to guide the vehicle for some brief interval of 
time, say one or  two seconds. Then a recomputa- 
tion of the angle x is made based upon the coordinates 
at  the later time. This process is  repeated a t  short 
time intervals throughout the remainder of the flight. 
A s  time progresses, the assumptions become more 
accurate until at  the instant of cutoff they a re  exact. 
Thus, the scheme is a self-correcting process for the 
e r ro r s  committed by the simplifications and it is also 
self-correcting for any perturbations which may oc- 
cur during the flight. This is true because the prob- 
lem is resolved at  each computation step without 
regard to what has happened in the past. Final ac- 
curacy of the terminal conditions is assured by this 
self-correcting feature. 

But this angle is 

2. Optimality. While the very nature of the 
process insures the desired accuracy of the system, 
maximizing the payload by this technique is not 
guaranteed. For  example, it is necessary to correct 
for the assumption of constant magnitude and constant 
direction of the gravity vector. 

This compensation is made by introducing into 
the equations of motion a weighted average of the 
gravity magnitude and direction between the current 
point on the flight and the final point. It is also 
necessary to rotate the coordinate system s o  that one 
axis coincides with the local vertical at the cutoff 
point. This is done to avoid introducing difficulties 
into the equations of motion by awkward end condi- 
tions if the coordinate system is not rotated, 

Some additional accuracy problems arise when 
this concept is extended to cover multiple guided 
stages and the programmed mixture ratio shifts. 
These problems are  more in the nature of minor an- 
noyances because solutions have always been found SO 

that the payload loss of the IGM as compared to the 
strict calculus of variations solution is negligible. 

3. Stability and Error Analysis. The partial 
derivatives of attitude with respect to the state vari- 
ables are the most significant criteria for stability 
and accuracy. The F/M derivative is small during 
the entire flight, eliminating this usually rather 
noisy measurement as trouble source. However, as  
the trajectory optimization is based on a predicted 
relation of the future thrust profile for a stage to the 
instantaneously measured value , any major thrust 
change will cause a performance loss. 

The other derivatives start at low values and in- 
crease approximately inversely proportional to the 
time-to-go (for velocity e r ro r s )  or its square (for 
displacement). The tightening of the guidance loop 
toward the end of flight.& very desirable as it keeps 
residual e r r o r s  small. However, it creates a poten- 
tial stability 'problem. This problem was eliminated 
without causing a significant e r r o r  by stopping com- 
putation of the steering equations a t  a given time-to- 
go (e. g. , T = 20 seconds) and flying open loop. A 
better method is to freeze the time-to-go at a mini- 
mum value and continue guidance. 

The low guidance gains a t  early flight make the 
system very tolerant to major disturbances, noise, 
and time lags during this phase. 

Guidance scheme e r ro r s  for realistic variations 
of initial conditions (Fig. 18) are very small. The 
effects of performance variations, changes in air 
density, and winds are equally insignificant. 

A time lag of five seconds from measurement to 
steering command causes no e r r o r  and no loss of 
weight in orbit. 
e r r o r  and 11 percent payload loss. 

A 40-sec lag caused 3-km altitude 
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Periodic thrust fluctuations with a maximum 
amplitude of 65 percent of nominal and periods of 5 
to I 0 0  seconds create no serious stability problem. 

FIGURE 18. ITERATIVE GUIDANCE MODE 
ACCURACY & PERFORMANCE 

4. Present and Future Guidance Research. 
The iterative guidance mode as  just described pro- 
vides accuracy, optimality, and flexibility for  the ex- 
amples shown on Figure 19. 

I .  Sing le  S t a g e  l a  O r b i t  

2 .  M u l t i p l e  S t a g e s  t o  O r b i t  

3.  E a r t h -  Moon G u i d a n c e  

4 .  E a r t h  - M a r s  G u i d a n c e  

5 .  P l a n e  C h a n g e  C a p a b i l i t y  

6 .  T h r e e  D i m e n s i o n a l  G u i d a n c e  

7 .  F l e x i b i l i t y  for  A l t e r n a t e  Guidance 8 Abort 

FIGURE 19. ITERATIVE GUIDANCE 
ACHIEVEMENTS 

Actual calculations have demonstrated its capability 
for  placing a space vehicle into earth orbit by a single 
guided stage to orbit; it is also successful with two 
stages to orbit including a step mixture ratio shift 
which essentially becomes three guided stages to 
orbit. 

The iterative guidance mode has been used SUC- 

cessfully also to guide trajectories out of earth orbit 
to the moon and also to guide to the planets. This is 
an impressive list of accomplishments for a guidance 
concept, and others could be related concerning flexi- 

bility to change to alternate mission after launch and 
to handle abort situations which may occur during 
flight. 

However, the intent at this point is to describe 
the guidance situation for which the iterative guidance 
mode has not been demonstrated adequately and to 
indicate what efforts a r e  being made to provide satis- 
factory guidance for these cases. 

A s  a general comment, it may be pointed out that 
iterative guidance mode does not perform satisfactor- 
ily at  present when any one of the following three 
conditions shown in Figure 20 is encountered. 

I .  Lou T h r u s t  t o  W e i g h t  R a t i o  

2 .  L a r g e  C e n t r a l  A n g l e  

3 .  R e n d e z v o u s  

FIGURE 20. NECESSITIES OF NEW OR IMPROVED 
METHODS 

a. The first limitation occurs when thrust to 
weight ratio is less  than a few tenths of one g. 
Under these conditions the approximations which are 
made in the derivation of IGM become so inaccurate 
at  this thrust level that satisfactory performance is 
not attained. Thus new concepts a re  being sought for 
low thrust interplanetary flights where the thrust 
levels a r e  of the order of a small fraction of one g. 

b. The second limitation of the IGM occurs when 
the  central arc, i. e. , the angle at the center of the 
earth between the point of beginning of guidance and 

degrees. Starting from earth orbit with low thrust 
trajectories, it is sometimes necessary to spiral 
around the earth several times before the velocity of 
the space vehicle reaches essentially escape velocity. 
IGM so f a r  has not proved adequate for these cases. 

L - --- : ,-. .. LuLAwLv.. cf r ~ i r l n n p ~ ,  ~ a w e r i s  approximately thirty 

c. A third category which must be studied care- 
fully is a trajectory where all coordinates are  speci- 
fied at the terminal end of guidance as  in rendezvous. 
IGM has not yet been shown adequate for such cases. 
It may be pogsible to modify the iterative scheme to 
handle all three of these problem areas.  Until such 
modifications a r e  made, efforts will be directed to- 
ward studying other concepts together with attempts 
to modify the iterative concept. 
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RESEARCH ACHIEVEMENTS IN OPTIMIZATION TECHNIQUES 
by 

C. C. Dearma$ 

SUMMARY 

1 
1 done a t  MSFC in attempting to compute optimal, i. e., 
,' minimum-fuel, multistage trajectories for space 

missions. In the early studies, attempts at t ra -  
jectory optimization were confined to single-stage 
trajectories. The calculus of variations w a s  the 
optimization techniqde principally employed in  these 
studies, as well as in the more complex problems 
which followed. With the discovery of the work by 
C. H. Denbow, who theoretically, at least, solved a 
large class of variational problems, work w a s  begun 
on computing fuel-minimizing, Apollo type, multi- 
stage trajectories. While Denbow's extension of the 
classical theory of the calculus of variations provided 
for the optimization of multistage trajectories, it de- 
manded that all state variables be continuous. There- 
fore, i t  was not satisfactory for  solving realistic 
multistage trajectories in which some state variables, 
for example, the mass, are discontinuous functions 
of time at those points of vehicle stage separation 
where the large mass of the burned-out stages a r e  
detached from the vehicle. Therefore, it w a s  neces- 
sary to extend Denbow's work to include discontinuous 
variables. This w a s  done, but only necessary condi- 
tions for an optimum were found. A t  present, there 
have been discovered no sufficient conditions for the 
case involving discontinuous state variahles as have 
been found for  the Denbow problem with continuous 
state variables, and unless sufficient conditions a r e  
satisfied by the trajectory it cannot be said to be fuel 

a t  present. 

This paper is a survey of the work that has been 

I 

I 

, 
I 
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In attempting to calculate fuel-minimizing multi- 
stage trajectories on a digital computer, several 
difficulties have arisen which have prevented compu- 
tation of the trajectories. These difficulties seem to 
stem from the introduction of the additional differen- 
tial equations and new variables, called Lagrange 
multipliers, required by the theory. The problem is 
being investigated both in-house and by outside con- 
tractor s. 

Conducted simultaneously with the studies in 
multistage trajectory optimization were the studies 
in low-thrust trajectories, optimal orbital transfers, 

and optimal reentry trajectories. In the first two of 
these studies, the calculus of variations techniques 
proved to be 'unsuccessful, and other optimizing 
methods w e r e  employed. All of these studies, how- 
ever, a r e  in the exploratory stage, and much work 
remains to be done. 

RESEARCH ACHIEVEMENTS I N  OPTIMIZAT 
TECHNIQUES 

The research in optimization techniques and 

ON 

ts 
applications to problems of space flight a t  Marshall 
Space Flight Center has been largely geared to at- 
tempts to determine optimal guidance schemes and 
optimal control l aws  for space vehicles. The prob- 
lems in optimization relative to the development of 
optimal control l a w s  were discussed a t  the Research 
Achievements Review Series No, 3 which w a s  held 
las t  April. Research in optimization techniques as 
it relates to space vehicle guidance is the subject of 
this review. This relation to guidance has two im- 
portant aspects that motivate the research. These 
a r e  ( 1) the development of optimal guidance schemes, 
and (3) the testing of nonoptimal guidance by provid- 
ing optimal trajectories a s  standards for comparison. 
Both aspects demand the existence of a capability for 
generating optimal, that is, minimum-fuel trajec- 
tories, in both perturbed and unperturbed cases. 

In the first aspect, the development of optimal 
guidance functions, it appears necessary that a suit- 
nhle samFling of -perturbed optimal trajectories 
meeting all constraints and boundary conditions and 
satisfying the equations of motion be generated as a 
preliminary but essential step. The development of 
the guidance equations from the sampling of per- 
turbed optimal trajectories and, indeed, the selection 
of the sampling itself, are  very difficult problems 
and do not properly belong in a discussion on optimi- 
zation techniques even though they are  significant 
motivating factors in the discovery and use of these 
techniques. In the second aspect, the testing of non- 
optimal guidance procedures, the amount of fuel re- 
quired for nonoptimal guidance in a perturbed tra- 
jectory can be compared with the strictly minimum- 
fuel trajectory subjected to the same perturbations, 
thereby possibly forming the basis for a judgement 

* Scientific Assistant, Aero-Astrodymmics Laboratory. 
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a s  to the adequacy of the nonoptimal guidance pro- 
c ed ure . 

The research in optimization of trajectories 
may be categorized as shown in Figure 1. 

I. 

2.  

3. 

4. 

5 .  

M u l t i s t a g e  ( A p o l l o  - t y p e )  T r a j e c t o r i e s  

L o w  T h r u s t  T r a j e c t o r i e s  

I m p u l s i v e  O r b i t a l  T r a n s f e r  

R e e n t r y  T r a j e c t o r i e s  

S u p p o r t i n g  R e s e a r c h  A c t i v i t i e s  

FIGURE 1. RESEARCH IN TRAJECTORY 
0 P TIM IZ A TION 

Mathematically, low-thrust trajectory optimization, 
impulsive orbital transfer, and reentry trajectory 
optimization a re  special cases of the problem in the 
f i rs t  category, and the solution of this problem, a t  
least  theoretically, implies the solution of the others. 
However, research in these categories was carried 
on simultaneously with research in problems in the 
first category because the considerable difficulties 
encountered with problems in the first category did 
not portend an early solution. Also, i t  w a s  thought 
that study of the less general problems might shed 
some light on the multistage problem. 

The fifth category, supporting research activi- 
ties, has been confined largely to studies in celestial 
mechanics and i ts  application to the motion of space- 
craf t  in cislunar and solar space and to methods of 
obtaining approximate solutions of the two-point 
boundary value problem of which the optimal tra- 
jectory problem i s  but a special case. 

Figure 2 shows the principal contractors who 
have worked in the areas of trajectory optimization 
that w e  have just discussed. 

I t  is clear from the foregoing that the research 
in optimization has been motivated almost entirely 
by the necessity f o r  solving intensely practical prob- 
lems of immediate and lasting interest in the space 
program. 

When work was f i rs t  begun several years  ago by 
what is now called the Astrodynamics and Guidance 

AREA OF RESEARCH 

1. Calculus of Variations 

CONTRACTORS 

Vonderbilt U., Southern Illinois U., Republic 
Aviation, Grumman A i r c r a f t ,  H a y e s  
International, General Electric, Auburn U., 
Analytical Mechanics Assoc., U n i t e d  
Aircraft, Martin-Marietta, Lockheed Aircraft 

2 .  Lou Thrust Trajectories 
~ 

3. Impulsive Orbital Transfer 

4. Reentry T r a j e c t o r i e s  

Aeronutronics (Ford), Grumman A i r c r a f  I 

North American Aviation, United A i r c r a f t  

Auburn U. ,  R o y t h e o n  

Value P r o b l e m  

FIGURE 2 .  CONTRACTOR PARTICIPATION 
IN TRAJECTORY OPTIMIZATION 
RESEARCH 

Theory Division of the Aero-Astrodynamics Labora- 
tory on the problem of generating optimal guidance 
functions for  missions involving multistage tra- 
jectories, a survey was made of existing optimization 
techniques in an attempt to discover the technique 
that would be most practicable for the solution of 
trajectory optimization problems. The survey led 
to the selection of the calculus of variations a s  the 
most likely candidate for solving the problems. Other 
techniques a r e  known under such names as the 
Pontryagin maximum principle, the method of steep- 
est descent, and dynamic programming. The calcu- 
lus  of variations, however, had enjoyed a long and 
fruitful history of development, and because of this 
it was the most mature and most highly refined of all 
known methods. 

In this country, the work of G. A. Bliss and his 
students in the calculus of variations a t  the University 
of Chicago Department of Mathematics w a s  available 
in the form of published books and scores of research 
papers. Also, in the long history of the development 
of calculus of variations, many practical applications 
of the theory had appeared in numerous publications; 
these were considerably in excess of the number of 
applications of the other optimizing techniques. Thus , 
i t  was that major emphasis, both in-house and among 
outside contractors employed for the purpose of 
assisting in the solution of the problem, was given to 
exploiting the capabilities of the calculus of varia- 
tions. However, “a  foot was kept in the door of the 
other techniques, so to speak, by assigning‘ some  
studies in them to contractors and to maintaining a 
relatively small  in-house effort in these techniques 
a s  well. 
ploiting the techniques of calculus of variations, i t  i s  
this technique that will be emphasized in this review. 

Because the principal effort was in ex- 
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Let us consider the general problem of directing 
a space vehicle f rom a prescribed initial state to a 
prescribed terminal state. Let  us  further suppose 
that some steering law is available. The state of a 
space vehicle is considered to be known a t  any given 
time t when certain defining parameters a re  known. 
For  the purposes of discussion here the state of the 
vehicle wi l l  be considered to be known if its position 
coordinates, velocity components, thrust, mass,  
and burning rate  are known at the given time. Thus, 
in w h a t  is usually called the "state space," nine co- 
ordinates are required to define the state of the ve- 
hicle a t  any time. It is to be emphasized at this 
point that this particular choice of stage coordinates 
is not necessarily the best choice, It is entirely 
possible that another choice would make the problem 
more tractable and the computational aspects much 
easier to perform. The determination of the best 
choice of state variables is under continual study. 

I 

_ _  

C. C. DEARMAN 

Now, if it is required that the solution curve be the 
optimal or minimum-fuel trajectory, then some op- 
timizing technique must be employed to insure this 
requirement. A s  will be discussed in  more detail in 
the sequel, the requirement of optimality introduces 
additional differential equations and new variables 
called Lagrange multipliers which must be solved for 
simultaneously with the nine equations of motion, and 

"there's the rub," as we shall see. 

A s  a consequence of the number of variables 
chosen to define the instantaneous state of the ve- 
hicle, the equations of motion, considered a s  a sys- 
tem of first-order differential equations, are  nine in 
number, 
taneously in order  to obtain a solution curve or tra- 
jectory in state space. Perhaps it should be men- 
tioned that the solution is obtained by numerical 
means by a digital computer and not by analytical 
methods. The attainment of the solution by analytical 
methods would be, of course, the more desirable, but 
no one a s  yet has  been able to do this except for  sim- 
plified cases. 

These equations must be solved simul- 

Any solution curve o r  trajectory must pass 
through the initial point in state space and must sat- 
isfy terminal conditions and numerous constraints as 
well. Figure 3 illustrates a solution of the equations 
of motion. 

X 

1 i n i t i a l  S t a t e  

It was clear from the beginning of the studies in 
trajectory optimization that the problem of optimiza- 
tion of an arbitrari ly general multistage trajectory 
that began from launch on earth and ended upon re -  
turn to earth would be far too complex a problem to 
attack initially. It was decided to concentrate on the 
problem of optimizing only that part of a multistage 
trajectory whose initial point is just outside the 
earth 's  atmosphere and whose terminus is a pre- 
scribed lunar orbit a s  shown in Figure 4. 
jectory represents a par t  of an Apollo type trajectory. 

This tra- 

- Thrust Arcs 
Coast  Arcs - 

FIGURE 4. A MULTISTAGE TRAJECTORY 

No effort was made in the early studies to com- 
pute a calculus of variations (COV) trajectory for 
the atmospheric &n of the flight. Even when this 
computation is done now, certain simplifications, 
such a s  exponential atmosphere, are usually made 
which probably cannot be tolerated in realistic simu- 
lations. Even when the simplifications are not made, 
as in the deck recently compiled by R. E. Burns of 
the Aero-Astrodynamics Laboratory, only necessary 
conditions are satisfied; this means that the resulting 
COV trajectory is not guaranteed to be fuel mini- 
mizing. 

Sta te  
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illustrated in Figure 4 is itself too complicated a 
problem for a beginning effort. Some less ambitious 
program may be decided upon to provide a simpler 
problem. Dr. Jan Andrus of General Electric 
Company and Dr. M. G. Boyce of Vanderbilt 
University, who have been working for US for several 
months on this trajectory optimization problem, a r e  
rather of the opinion that simpler problems should 
now be attacked in an effort to learn how to overcome 
some of the difficulties that have been encountered in 
our attempts to solve the more complex multistage 
trajectory problem. 

Let u s  now describe the multistage trajectory to 
which we have applied the techniques of the COV. 
Assume that point 1 in Figure 4 represents the ter- 
mination of an S-IC stage above the earth's surface 
and that a t  this point all state variables a re  known. 
The point is also presumed to be outside the earth's 
atmosphere so that the entire space vehicle i s  there 
subject only to thrust and gravitational forces. At 
point 2 assume that the S-I1 stage is detached and 
that the S-IVB stage engines a r e  ignited. These sep- 
arating and igniting actions in the beginning studies 
were assumed to occur simultaneously. Of consid- 
erable significance in the evolution of the optimiza- 
tion problem is that at point 2 the mathematical 
model of the motion of the vehicle was based on the 
assumption that there existed discontinuities in the 
state variables of thrust, burning rate, and mass be- 
c a b e  of the separation sequence that occurred at 
that point. I t  is the assumption of discontinuities in 
these three state variables that has been the source 
of many problems, some of which have not yet been 
solved. 

A t  point 3 the vehicle enters an essentially el- 
liptical orbit of a specified shape and size. This re- 
quires that the distance of the point from the earth 's  
center, the velocity of the vehicle a t  the point, and 
the angle between the radius vector and velocity 
vector be specified. The location of point 3 on the 
ellipse, the orientation of the plane of the ellipse 
relative to the coordinate system used and the orien- 
tation of the ellipse within the plane are  not speci- 
fied. In all studies thus far undertaken, point 3 has 
been chosen a s  the perigee of the ellipse thereby 
fixing the angle between the radius vector r and 
velocity vector v at 90". The remaining unspecified 
factors,  the orientation of the plane of the ellipse 
and the orientation of the ellipse within the plane, a r e  
to be determined by the optimization procedure. 
Because a coast a r c  is entered a t  point 3, the thrust 
and burning rate are reduced to zero. If, as it has 
been assumed, this is done instantaneously, dis- 
continuities appear again in these two variables. 
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The optimization process is used to determine * 

point 4 and the time td of the space vehicle's arrival 
there when thrust is again initiated. The time of 
flight from point 4 to point 7, where the vehicle en- 
ters the lunar orbit, is specified. This is done by 
initiating thrust a t  point 4 such that the time lapse 
between points 4 and 7 is equal to the specified time. 
This condition of specified flight duration is imposed 
to prevent the lunar transfer trajectory from extend- 
ing over an excessively long time. I t  may be possible 
for  a space vehicle in a minimum-fuel trajectory 
without a time constraint to coast for years before 
entering the desired lunar orbit. 

A t  point 5,  the burned out S-IVB stage of the ve- 
hicle is separated and the thrusting and burning rate 
both die out to zero. 
flight lunar transfer trajectory. A t  point 6 ,  a retro- 
thrust maneuver is initiated so that the vehicle may 
be placed into the prescribed lunar orbit. A t  point 7, 
the specified lunar orbit is entered. 

The vehicle is now on a free 

It  wil l  be noted in the physical description of the 
problem just given that the trajectory consists of 
several parts o r  stages and that at time points de- 
fining the terminus of some of the stages, and simul- 
taneously the origin of the stages following, it is 
assumed that there exist discontinuities in some of 
the state variables. The existence of the several 
stages and the assumption of discontinuities in some 
of the state variables provided considerable obstacles 
in the use of the classical theory of the calculus of 
variations in optimizing multistage trajectories. Fo r  
in the classical theory, it is demanded that there 
exist only one stage, i. e. , that the function to be 
minimized depend on the coordinates of the end- 
points of the trajectory and not on the coordinates of 
any intermediate points. 
requires that the state variables be continuous func- 
tions of time and have continuous derivatives a t  least  
up to a specified order. Thus, the beginning efforts 
in applying the calculus of variations to trajectory 
optimization werenecessarily confined to attempts to 
optimize a single stage, because it was only for  this 
that the necessary mathematical tools were known a t  
that time to be available. 

The classical theory further 

The optimization of the one-stage trajectory is 
an example of the classical problem of Mayer in the 
calculus of variations and w a s  first recognized as 
such by P. Cicala and A. Miele in 1956. It is  en- 
lightening to observe that the problem of Mayer is a 
special case of the more general problem of Bolza. 
Because the Bolza problem may be transformed into 
the Mayer problem and vice versa,  one hears the 
trajectory optimization problem frequently referred 
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1 to as a Bolza problem, as a Mayer problem, or as  a 
Bolza-Mayer problem. But regardless of whether 
the problem is formulated as a problem of Bolza o r  
as a problem of Mayer it presents similar difficulties 
when attempts a re  made to solve it. A t  best w e  can, 
at the present time, do no better than to find a nu- 
merical solution on the digital computer. An analyt- 
ical solution will probably always elude us. 

However, the basic theory of the classical Bolza 
(or Mayer) problem may be considered to be almost 
complete. By almost complete, we mean that a set 
of necessary conditions for an optimum has been 
found that, when suitably modified, forms a set of 
conditions sufficient to guarantee an optimum at 
least  when compared with a certain class of solutions. 
The necessary conditions a re  the multiplier rule-a 
corollary of which is the falllous Euler-Lagrange 
differential equations, the condition of Weierstrass , 
the condition of Clebsch, and the Jacobi or  so-called 
fourth necessary condition. 

It is important to observe that these four neces- 
sary conditions for the problem of Bolza a re  only 
loosely analogous to the conditions-bearing the same 
names for the simpler problems in  two-dimensional 
state space. Any attempt, therefore, to illustrate 
these conditions for  the problem of Bolza by use of 
geometric diagrams in  the plane would lead to con- 
fusion and erroneous impressions. 

It may be deduced from the basic theory of the 
calculus of variations that every minimum-fuel, 
flyable trajectory must satisfy these conditions. 
However, it must be noted, since these conditions 
a re  only necessary, that there may exist nonmini- 
mizing trajectories that also satisfy them. There- 
fore,  a COV trajectory which satisfies only some or 
all of the necessary conditions is not necessarily a 
minimum-fuel trajectory. About the most that can 
be said for  such a trajectory is that it is a promising 

discussion, the important fact is that slight modifica- 
tion of the last three of these conditions transform i 

the necessary conditions into a set of sufficient con- 
ditions. 

---J:J-+- f A -  - -:-~-o,--f,,ol f r o i o n t n r ~ r  Pop t h i s  
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It  is rather  common practice to designate the 
four necessary conditions for the problem of Bolza 
by the Roman numerals I, 11, III, IV a s  shown in 
Figure 5. If a trajectory is an optimum trajectory, 
it must satisfy these conditions. The modifications 
of the conditions that transform them into a set of 
sufficient conditions are designated by the symbols 
I, II', III', IV'. 'Any trajectory that satisfies all of 
these conditions is an optimum trajectory. 

I. T h e  M u l t i p l i e r  R u l e  I 
(Corollary- Euler - Lagrange Dif ferent iol  Equations) 

II 2. T h e  C o n d i t i o n  o f  W e i e r s t r a s s  

3. T h e  C o n d i t i o n  o f  C l e b s c h  In 
4. T h e  Jacobi  o r  Fourth  .Necessary Condi t ion Ip 

A l l  O p t i m a l  T r a j e c t o r i e s  M u s t  S a t i s f y  A l l  t h e  
N e c e s s a r y  C o n d i t i o n s .  

FIGURE 5. NECESSARY CONDITIONS IN THE 
CALCULUS OF VARIATIONS 

Now, it is possible to calculate a COV trajectory 
on a digital computer by invoking only some of the 
necessary conditions. Al l  necessary conditions are 
not required for the computation. However, to 
guarantee that the computed trajectory is indeed an 
optimum trajectory, it must satisfy all four sufficient 
conditions. Even if the sufficient conditions a r e  sat- 
isfied, however, there is no assurance that the tra- 
jectory satisfying them is unique. 
other trajectories which use no more fuel and satisfy 
the same conditions. If a set  of conditions could be 
found which were a t  once both necessary and suffi- 
cient, then the trajectory satisfying them would be 
optimum a t  least  among all trajectories of its class 
and lying in some neighborhood of it. For  the tra- 
jectory problem, which, a s  we have mentioned before, 
i s  an example of the problem of Rolza, there have 
been discovered no conditions that a re  both necessary 
and sufficient. 

There may be 

In the evolution of attempts to find an optimum 
trajectory, it was considered expedient to employ the 
easier to invoke necessary conditions for COV tra- 
jectory calculation rather than to use the more se- 
vere and more numerous sufficiency conditions. The 
experience and knowledge gained thereby could later 
be used to apply the sufficiency conditions i f  that 
should appear to be desirable. However, up to this 
time no serious attempt has been made to invoke suf- 
ficient conditions even for the single stage case. 
Instead, concentration of the multistage problem has 
been made in the hope that a least  a set of neces- 
sary conditions could be determined from which a 
solution curve could be found that would satisfy them. 
There was always the strong conviction that physical 
considerations would be sufficient to guarantee that 
this solution curve was indeed a minimum-fuel tra- 
jectory, at least  among all trajectories that satisfied 
the physical conditions of the problem if not among 
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all mathematically possible trajectories. When it 
appeared that the single stage problem was essen- 
tially solved, it was decided to attack the multistage 
problem with the assumption of continuity of state 
variables even though discontinuities, as mentioned 
before, in some of them had been assumed to exist 
in what was then believed to be the more realistic 
mathematical model. Several of the contractors who 
had been working on other aspects of trajectory opti- 
mization were asked to begin investigating the multi- 
stage trajectory problem. When the problem w a s  
discussed with Dr. Boyce of Vanderbilt University, 
one of the contractors, several months after the 
work with some other contractors had been initiated, 
he pointed out that, effectively, the multistage prob- 
lem with continuous state variables had been investi- 
gated and solved by C. H .  Denbow and that his results 
had been published in his doctoral dissertation at the 
University of Chicago in 1937. Not only had Denbow 
found necessary conditions for a minimum in the 
general problem of Bolza for the multistage case 
with state variables continuous, but he had found a 
set of sufficiency conditions as well .  

Immediately work was begun on extending the 

This investigation w a s  
work of Denbow to include the case with discontinui- 
ties in the state variables. 
advanced considerably by the work of Dr. R. W. 
Hunt, a consultant for the division and professor of 
mathematics a t  Southern Illinois University. Hunt 
applied Denbow's methods to a Mayer formulation of 
the multistage problem and permitted discontinuities 
in the state variables and constraints a t  the staging 
points. However, Hunt's extension required that the 
times of staging be fixed, but not necessarily known. 
Hunt obtained three necessary conditions which the 
minimum-fuel trajectory must satisfy, but no se t  of 
sufficient conditions. The necessary conditions for 
the case he treated are  analogues to the multiplier 
rule, the Weierstrass condition, and the Clebsch 
condition , re spec tively., 

M. G. Boyce and J. L. Linnstaedter of 
Vanderbilt University Department of Mathematics 
further extended the work of Denbow and Hunt to in- 
clude control variables, finite equation conditions, 
and inequality constraints. Boyce and Linnstaedter 
also obtained necessary conditions for their more 
general problem, but no sufficient conditions. 

This is the state of the theory a t  present. Al- 
though much has been done toward the solution of 
finding the minimum-fuel trajectory for multistage 
type missions, much remains to be done. For  
example, for the classical problem of Bolza, many 
necessary conditions have been found, but for i ts  
generalizations by Hunt o r  Boyce and Linnstaedter, 

only three necessary conditions have been obtained. 
Since these three conditions have not resolved some 
serious difficulties in attempts to compute by digital 
simulation a trajectory satisfying them, it appears 
that further efforts should be made to obtain other 
necessary conditions analogous to those already ob- 
tained for the classical problem of Bolza, which, 
when used instead of o r  possibly in conjunction with 
the necessary conditions already known, will resolve 
some of the difficulties presently encountered. In 
addition, it is of paramount importance that serious 
efforts be started on the development of a set of suf- 
ficient conditions because the satisfaction by the 
solution curve of necessary conditions does not 
guarantee that i t  is an optimum solution. If a solu- 
tion curve satisfies sufficiency conditions , however , 
it is indeed an optimum, at least when compared to 
other trajectories in a certain neighborhood that a r e  
flyable and satisfy the imposed constraints and 
boundary conditions. 

Although these suggestions for the direction 
which further research should take have assumed the 
existence of discontinuities in the state variables, 
mass,  thrust, and burning rate, the continuous 
variable approach to obtaining a minimum-fuel tra- 
jectory still has some attractive qualities. 
the thrust and burning rate are not physically dis- 
continuous functions of time, i t  might be more 
realistic to obtain a continuous approximation of their 
rapid decreases and increases a t  the staging points 
where engine cutoff and reignition occur. The only 
physical discontinuity, that of mass, could be ap- 
proximated by a very rapidly decreasing function. 
Then all state variables could be considered as con- 
tinuous throughout the trajectory and the work of 
Denbow, modified for the trajectory problem, could 
I J ~  used. A s  mentioncd previously, in Denbow's work, 
ncccssary conditions as well  as sufficient conditions 
have been found. The trajectory obtained by satisfying 
the sufficicnt conditions would be a t  lcast one minimum- 
fuel trajectory for the imposed conditions. 
functions could then be derived around this trajectory a: 
the nominal. 

Because 

Guidance 

Thus, by way of summary, it may be said that. i f  
a sufficiently accurate mathematical model of the 
physical system is obtained by considering all state 
variables as  continuous functions of time, although 
some of them may be very steeply increasing o r  
decreasing at certain staging points, o r  physically 
discontinuous at these points, then the basic mathe- 
matical theory sufficient to guarantee a minimum- 
fuel multistage trajectory is available fo r  use. If it 
is not adequate to consider all state variables as 
continuous functions of time, but to take as discon- 
tinuous at certain staging points the steeply rising 



c. C. DEARMAN 

Simultaneously with the study just described,at- 
tempts were made to compute two-stage COV tra- 
jectories with both stages lying outside the earth's 
atmosphere. Continuity of all state variables was 
assumed, and no attempt initially was made to satisfy 
any necessary conditions except the Euler-Lagrange 
differential equations. While  the state variables were 
taken to be continuous throughout both stages, it w a s  
not known whether the Lagrange multipliers were 
also continuous especially at the staging points. I t  
was intuitively felt that the multipliers were contin- 
uous throughout both stages, and COV trajectories 
were calculated with this assumption. The question 
of multiplier continuity was answered for continuous 
state variables by M. G. Boyce of Vanderbilt 
University. 

o r  falling variables such a s  thrust and burning rate 
and to treat the physical discontinuous mass as 
mathematically discontinuous, then only necessary 
conditions a r e  available for use. In this case,  find- 
ing sufficient conditions may be a matter of much 
importance. Some in-house work is being done on 
this problem now. 

So far, we have not discussed several difficulties 
which have been encountered in attempting to com- 
pute minimum-fuel trajectories on a digital computer. 
Basically, the difficulties a r i se  because of the intro- 
duction of additional differential equations which re- 
sult from applying the methods of the calculus of 
variations. Among these new differential equations, 
as we have mentioned,are some which introduce new 
variables which we call Lagrange multipliers. These 
new variables result, of course, from invoking the 
multiplier rule. If you recall, we stated that the 
state variables a t  point i (Fig. 4) on the trajectory, 
the initial point, were known. With the introduction 
of the Lagrange multipliers, however, we add new 
variables whose values a t  point 1 a r e  not known. 
They must be determined if w e  a r e  to direct the ve- 
hicle in an optimum manner to point 2 .  In fact, not 
only must these multipliers be known a t  point i, but 
they must be determined a t  every integration time 
step along the trajectory when thrust is being applied. 
This statement, of course, implies that the multi- 
pliers are intimately related to the vehicle's pitch 
and yaw angles, a s  indeed they are. In fact, the 
relations of the multipliers to the pitch and yaw 
angles are through simple trigonometric expressions. 

In early attempts to calculate multistage tra- 
jectories,only two stages were used. In one effort 
the boost stage was the first stage; from boost burn- 
out to a specified earth orbit w a s  the second stage. 
No attempt w a s  made in the early efforts to apply the 
calculus of variations to the boost stage. Instead, a 
zero-lift trajectory was calculated from the initiation 

out. From that point a COV second stage trajectory 
to the specified orbit was calculated. Of course, a 
different tilt program for  the booster might result 
in a trajectory which, overall, uses less  fuel than the 
trajectory originally calculated. 
better overall trajectory, a family of boost trajec- 
tories was generated by using different kicks a t  tilt 
initiation. From the burnout point for each of the 
boost trajectories,a COV second stage trajectory to 
the specified earth orbit was calculated. Then, by 
interpolation, the kick which would initiate the tilt 
program of the booster that would result  in the best 
overall trajectory was determined. The result was 
not a proven minimum fuel trajectory, but a t  least it 
was better than any member of the trajectory family. 

cf +;I+ .-*.., +an --_- ---- cnnnnrla _ _ _ _  frnm 1ift.off. until booster burn- 

To try to find a 

In late 1962, Boyce applied some necessary con- 
ditions to a simplified multistage problem. He 
assumed that all state variables were continuous and 
avoided the vexing problem of discontinuity in the 
mass a t  staging points by assuming that the mass 
was a known function of time; as such it was not a 
state variable. He further assumed that a fuel mini- 
mizing trajectory existed and that it was the unique 
solution to the equations of motion. With these 
assumptions, of course, Boyce could then declare 
that the trajectory which he obtained from invoking 
only necessary conditions must be a fuel minimizing 
trajectory. Boyce's principal contribution, however, 
was his proof that the Lagrange multipliers were 
continuous not only throughout each stage but at the 
staging points a s  well .  Because his proof is valid 
for any finite number of stages, it represents a sig- 
nif icant contribution. 

In the complex trajectory illustrated in Figure 4, 
the determination of precise values of the initial 
Lagrange multipliers made heavy demands on the 
analyst's experience, ingenuity, and ability to com- 
municate successfully with whatever goas nave con- 
trol of such matters. But so much spadework has 
been done in the past that now, with the experience 
gained, it is not too time consuming to calculate at 
least reasonable first approximations of them. An 
iterative procedure called the "differential correc- 
tion scheme, I t  formulated as  a part  of the contract 
requirements by G. N. Nomicos of Republic Aviation, 
is then employed to find more nearly precise values 
of the Lagrange multipliers a t  point 1. Having found 
the Lagrange multipliers and having been given- the 
state variables which define point i, the computation 
can be begun which, hopefully, wi l l  result in an opti- 
mum trajectory with the correct  retrothrust maneu- 
ver  a t  point 6 .  
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Unfortunately, difficulties, the nature of which 
a r e  not fully understood, have arisen which thus fa r  
have prevented the successful computation of the 
trajectory from point 1 all the way to point 7. The 
difficulties, whatever they may be, prevent the 
retrothrust maneuver at point 6. 
jectory,proven to be a minimum-fuel multistage 
trajectory from point 1 to point 7,,has been computed. 
Investigations and studies a re  being made from both 
in-house and by private contractors to locate the 
dif f icul tie s. 

Thus far ,  no tra- 

The trouble seems to l ie  in the convergence 
properties of the iterative scheme for  finding the 
initial values of the Lagrange multipliers to high 
precision. 
any value unless the first approximations of the 
multipliers in some instances, but not all, a r e  very, 
very close to their exact values. In other cases,  
the scheme converges to a value which is  not accept- 
able because its subsequent use does not permit 
attainment of the objective o r  desired terminal state 
for the stage. That is to say, the terminal state is 
extremely sensitive to changes in the initial values 
of the Lagrange multipliers. If these multipliers a t  
point 1 a r e  not known with great precision, the de- 
sired terminal state cannot be attained, 

The scheme simply wil l  not converge to 

A hopeful remedy seems to l ie in the use of 
another iterative process, the so-called Newton- 
Raphson method. It appears a t  present that this 
scheme wil l  converge for  rougher first approxima- 
tions than the differential correction scheme that is 
now in use. But whether it will converge to suffi- 
ciently accurate values of the initial values of the 
multipliers is a s  yet not known. 

The remarks just made might imply that the 
situation relating to multistage trajectory computa- 
tion i s  in a sad plight, indeed. Be assured that this 
is not the case a t  all. We can calculate quite satis- 
factory multistage trajectories for  any desired mis- 
sions. While these trajectories may not be strictly 
minimum-fuel trajectories, they nevertheless require 
the expenditure of less fuel than is available for use. 
The purpose of optimization is to find that trajectory, 
if i t  exists, which wi l l  use the least  possible amount 
of fuel to accomplish the mission. 
fuel over nonoptimum trajectories could possibly be 
converted into payload. We must be prepared, how- 
ever, for the possibility that the savings w i l l  be 
negligible. But we will never know whether they a r e  
or  not until successful optimization of the trajectories 
has been achieved. 

The savings in 

Conducted simultaneously with the studies in 
multistage trajectory optimization a re  studies in  the 
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optimization of low-thrust trajectories. The goal of 
the low-thrust trajectory optimization project is the 
development of techniques and computer programs 
for determination of minimum-time o r  minimum-fuel 
trajectories for  both geocentric orbital transfer and 
interplanetary rendezvous and flyby operations. Suc- 
cessful low-thrust trajectory optimization techniques 
would be essential in the generation of optimal guid- 
ance schemes. 
thrust trajectories was attacked by classical varia- 
tional methods but with little success. The principal 
difficulties a re  again those of the two-point boundary 
value problem arising out of attempts to find numeri- 
cal solutions of the Euler-Lagrange equations. 
use of the method of gradients, a technique employing 
successive approximations, one of the so-called 
direct  methods of the calculus of variations, has 
been explored by several contractors, especially by 
H. K. Hinz and his associates a t  Grumman Aircraft. 
This is an attempt to circumvent some of the diffi- 
culties of the two-point boundary value problem. Of 
course these difficulties are also inherent in optimiz- 
ing multistage trajectories but they a r e  somewhat 
heightened in the case of low-thrust trajectories 
which may spiral about the earth many hundreds of 
t imes before departing into the .transfer trajectory. 
The length of time involved is so great that large 
accumulations of round-off and truncation e r r o r s  are 
made. A second difficulty associated with the use of 
the successive approximations techniques, which 
seemingly must be employed, is the need to store 
control variables a s  functions of time. If the func- 
tions a re  rapidly changing the amount of computer 
storage required may become prohibitive. A third 
difficulty, already encountered in the discussion of 
multistage trajectories, is the extreme sensitivity of 
terminal conditions to changes in initial values of the 
Lagrange multipliers. In an attempt to surmount 
this las t  difficulty in a relatively simple problem, 
H. K. Hinz and his associates a t  Grumman Aircraft 
considered the specific problem of determining the 
optimum thrust  steering program that would mini- 
mize the time to transfer between coplanar circular 
orbits in a central force field. Both orbits encircle 
a single body. Since they considered the thrust 
magnitude as fixed, minimum transfer time was 
equivalent to minimum fuel consumption. The use 
of the generalized Newton-Raphson method of suc- 
cessive approximations permitted the computation of 
optimum thrust  steering programs for progressively 
increasing values of final time for trajectories up to 
the final time for 21 revolutions about the earth. But 
for transfers involving 21.5  revolutions or more, 
the method did not converge to an accuracy of four 
significant figures of the Lagrange multipliers. 
Higher precision integration schemes seem to offer 
the best  hope of obtaining convergence to more sig- 
nificant figures. 

The problem of optimizing low- 

The 
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not progressed to the point where valid conclusions 
.may be made that would be helpful in mdtistage tra- 
jectory optimization. 

The third area of research in trajectory optimi- 
The orbital zation is in impulsive orbital transfers. 

transfer in the multistage trajectory w e  have been 
discussing is nonimpulsive. The aim of this research 
is to attempt to gain knowledge in this simplified 
transfer problem that would help in the understanding 
of nonimpulsive transfers. 

The impulsive thrust orbital transfer is, of 
course, an idealization. In the two-impulse case, 
for example, there is one instantaneous thrust to get 
from the initial orbit onto the transfer trajectory and 
a second instantaneous thrust to get into the terminal 
orbit as illustrated in Figure 6. , 

r\lnitial Orbit 

/ Terminal Orbit / 
/ 

FIGURE 6. TWO-IMPULSE ORBITAL TRANSFER 

Investigations have been made using one, two, 
and three impulse transfers. Because mathematical 
formulation of the problem leads to expressions 
which, except for special cases, are analytically 
intractable, the studies were made largely by nu- 
merical methods. 

fir. fi. F. &II&Y Liid k i ~  Z E E S C ~ ~ . ~ Z S  zt %r!h 
American Aviation, Inc. , are responsible for the 
majority of the numerical work that has been done 
by contractors in impulsive orbital transfers. 
have done some important analytical work as well. 
F. W. Gobetz of United Aircraft has contributed to 
the problem of optimum low-thrust orbital transfers. 

However, all of these studies in orbital transfer, 

They 

whether impulsive or low-thrust, were made with 
mathematical models that represented considerable 
simplifications of the physical model that actually 
exists. 
design studies and for suggesting modes of attack on 
the more realistic problems. The present stage of 
this research is still somewhat exploratory; it has 

Their usefulness is therefore limited to 

The fourth area of trajectory optimization which 
has been studied is the atmospheric reentry tra- 
jectory wherein the reentry vehicle is subject only 
to gravitational and aerodynamic forces. 

Because no thrusting, except for control jets, 
is employed, attention w a s  directed toward minimi- 
zation of the accumulated gravitational forces on the 
vehicle’s occupants. In mathematical form, this 
means the minimization of the integral of the square 
of the total aerodynamic acceleration. The optimiza- 
tion analysis which results from this formulation of 
the problem may be treated a s  a problem of Lagrange 
in the classical calculus of variations with fixed end- 
points or a s  a Pontryagin fixed end-point problem. 
The fixed end-points a re ,  of course, the initial point 
of the reentry trajectory on the edge of the earth’s 
atmosphere and the known and fixed terminal point 
on the earth’s surface. I t  is assumed that the re- 
entry vehicle’s control system is capable of directing 
the vehicle to the desired landing point. Studies in 
this a rea  thus far by out-of-house contractors have 
been done mainly by W. A. Shaw and his associates 
at Auburn University and by Blanton and Muzyka of 
Raytheon Corporation. 
problem both as a Lagrange problem and, therefore, 
used the methods of the classical calculus of varia- 
tions and a s  a Pontryagin fixed end-point problem 
and used Pontryagin’s maximum principle as the 
optimization technique. Results from each of the 
methods a r e  identical, but both approaches were 
taken to determine whether one offered any compu- 
tational advantage over the other. The answer ap- 
pears  to be in the negative. 

They have treated the 

In these beginning studies the most vexing prob- 
lem in trajectory optimization, that of determining 
t.he initial values of the Lagrange multipliers, was 
sidestepped by assuming that the multipliers were 
known. 
lated and solved simultaneously with the equations 
of motion, and a trajectory was obtained which 
satisfied them and certain specified constraints. 
Such a trajectory, of course, may not be the optimal 
trajectory since it satisfies only one necessary con- 
dition. Studies could be continued to determine 
whether the trajectory which satisfies this one 
necessary condition also satisfies sufficiency con- 
ditions, several sets of which a re  available for the 
single-stage two fixed point problem. 

The Euler-Lagrange equations were formu- 

In summary, then, if the study of the problem 
of multistage trajectory optimization is to be 
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continued, it is essential that a primary effort be 
directed toward determining a means for  finding the 
initial values of the Lagrange multipliers to much 
greater precision than seems to be possible using 
presently available methods. If this problem can be 
successfully resolved, certainly a multistage tra- 
jectory can be found that satisfied some necessary 
conditions. If, additionally, we a re  eventually able 
to show that this trajectory also satisfies a set  of 

sufficient conditions, we can with certainty say that 
a minimum-fuel trajectory has been found. 

It appears that the best way to accomplish these 
aims for the realistic multistage problem is through 
attacking much simpler trajectory optimization 
problems. Having solved these, the realistic prob- 
lem can be approached, it is to be hoped, by adding 
additional constraints one at a time. 
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The term astrodynamics and the nature of that 
field areverybriefly discussed. Then a brief cover- 
age of some of the research projects in astrodynamics 
is given. These include earth-moon trajectories, 
interplanetary trajectories, and the various models 
used for trajectory studies. In the a rea  of earth- 
moon transits,  Apollo type transits and periodic or- 
bits studied for possible Pegasus orbits a re  discussed 
in some detail. In the area of interplanetary flight, 
reference is made only to the specific publications 
available and the types of problems being studied. 
The trajectory models used a re  primarily the re- 
stricted three-body model and for interplanetary 
studies a matched-conic model. The use of precision 
models using complete ephemeris data and the cur-  
rent approach to such a model are mentioned, Final- 
ly, some of the future areas of effort a re  given. 

GLOSSARY 

Perisel - On a trajectory, the point of closest 
approach t o  the center of the moon. 

Barycenter - The center of mass of two bodies 
in a trajectory model. 

MEP - Moon-eaxth orbit plane. 

Perigee Belt - The locus of perigee points of a 
c lass  of earth-moon transits. 

Perisel Belt - The locus of perisel  points of a 
class of earth-moon transits. 

Vertex - The point representing the region at  
which a family of transits converges. 

Class of Transits - All  transits having a common 
perigee radius, perisel radius, and transit time be- 
tween these points. 

Family of Transits - Transits, all of one class, 
which have perigee on a straight line segment of the 
perigee belt or  perisel  on a straight line segment of 
the perisel belt. 

Periodic Orbit - A trajectory which periodically 
repeats itself. 

Transition Orbit - A trajectory which includes 
both near elliptical motion around earth and near 
elliptical motion around the moon with one or more 
transitions between the two. 

Cislunar - On this side of the moon o r  between 
earth and moon, o r  sometimes more generally in the 
vicinity of earth and moon. 

Flyby Transit' - A trajectory which passes near 
one of the celestial bodies, but does not stop or re- 
main any appreciable time near the body. 

Swing-By Transit - A trajectory which passes 
near a celestial body and utilizes the bending by its 
gravitational attraction to be directed to another ce- 
lestial body. 

Central Force Field - Usually a gravitational 
field at  all points of which the force is directed toward 
one central point, 

Libration Point - A point at which a ~Oay rends 
to remain stationary due to cancelling effects of grav- 
itational and centrifugal forces at  that point. 

Launch Azimuth - the direction measured in a 
horizontal plane a t  launch of the projection of the in- 
tended flight path on that plane. The reference is us- 
ually the north direction. 

':' Chief, Astrodynamics Branch, Aero-Astrodynamics Laboratory 
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Conic Flight - Flight in a central force field; it 
is shaped like a plane section of a cone, The focus 
of the conic is located at the center of force. 

Central Angle - The angle measured at the center 
of earth between any two position vectors of a space 
vehicle's flight path. 

Inertial Space - The space associated with an 
interial, or in other words stationary, reference 
frame. 

Rotating Frame - A reference frame or coordi- 
nate system which rotates. 

Restricted Model or Restricted Three-Body 
Model - A model of a gravitational system of two 
massive bodies which revolve in circles about their 
common center of mass  and a third body of negligible 
mass which moves in that gravitational system. 

Three-Body Problem - The problem of motion 
of three massive bodies under mutual gravitational 
attraction. 

SECT ION 1. INTRODUCTION 

Astrodynamics is the treatment of problems in 
celestial mechanics as they apply to contemporary 
space flight. Classical celestial mechanics has dealt 
with the description of orbits in various gravitational 
models primarily in t e rms  of application to the natu- 
ral bodies in the solar system or simply for academic 
reasons. It has relied on the resources of higher 
mathematics in describing motion in the system and 
has had only observation of natural bodies by which 
to test its results. Astrodynamics deals with the de- 
termination of flight paths for propelled and unpro- 
pelled spacecraft and with the matching of flight paths 
to booster flight characteristics. 

In addition to the standard methods of celestial 
mechanics, astrodynamics uses high speed computers 
to evaluate numerically many of the previously un- 
solved equations of celestial mechanics. Astrody - 
namics studies also seek simplified concepts for a 
better understanding of space problems and their 
rapid solution. 

In any exploration effort the choice of a path that 
satisfies a s  many of the exploratory missions re- 
quirements a s  possible is one of the most basic prob- 
lems. The work of astrodynamics in providing a 
thorough description of the paths available to the 
experimenter, therefore , is of primary importance 
to the mission. 
28 

The following is a brief review of some research 
efforts that have been made and are being made in 
astrodynamics at the Marshall Space Flight Center. 

Even with the availability of our huge, very high 
speed computers the problem of representing all pos- 
sible trajectories by computing large quantities of 
exact trajectories,  which incorporate a precise rep- 
resentation of the gravitational fields of the solar 
system , is virtually impossible. Trajectories that 
are very nearly correct can be, and a re ,  calculated 
for specific applications to well defined missions: 
however, the computer time required for these cal- 
culations is prohibitively large and the character of 
the trajectory so complicated by the complexity of the 
real solar system that it i s  not feasible to exclusively 
utilize these calculations in providing the general 
description of trajectories that is necessary for the 
planning of a mission. The aim of the Astrodynami- 
cist, therefore, is to provide approximate descrip- 
tions of trajectory behaviors that a r e  adequate for 
general mission planning, and to gain accurate de- 
scriptions of trajectory behavior by refinement of 
the approximate descriptions to continually bring 
them into closer agreement wi th  the precise results 
of complicated approaches. 
made of approximate models. 

Thus extensive use is 

SECTION 1 1 .  

A. APOLLO 

RESTRICTED THREE-BODY 
MODEL STUDIES 

TYPE TRANSITS 

Much of our effort in the study of trajectories 
in earth-moon space has utilized the restricted 
three-body model. This model is pictured in the first 
figure. n 

> 
FIGURE 1. RESTRICTED THREE-BODY MODEL 

The ear th  and moon a r e  assumed to revolve in a 
plane, which we will designate the earth-moon plane 
for a plane of reference,  and they move in circles 
about their center of mass ,  the barycenter. The 
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plane of motion, referred to as the MEP or moon- 
earth plane,and the line connecting the centers of 
earth and moon are  usually used as references. The 
use of the earth-moon line implies a rotating coordi- 
nate system. The results of our studies of trajec- 
tories applicable to Apollo type missions have been 
published in a ser ies  of reports entitled, "Lunar 
Flight Study Series" and have in a sense been sum- 
marized in another larger report, "A Comprehensive 
Astrodynamic Exposition and Classification of Earth- 
Moon Transits. (' A very brief review of the main 
points of the report can be given as follows. A class 
of earth-moon transits is defined by three parameters: 
The radial distance of close approach to the center.of 
earth (radius of perigee), the radial distance of 
close approach to the center of the moon (radius of 
perisel), and the time of transit between these 
points. Under this classification all transits within 
a given class (specified radius of perigee, radius 
of perisel, and time of transit) have a near circu- 
lar band of perigee positions from which departure 
is made. This is illustrated for several classes in 
Figure 2. The radii of perigee and perisel a r e  
constant over the classes shown, with only transit 
time variable. 

Earth YEP-Latitude (deq) 

I 

FIGURE 2. LOCI OF ALL POSSIBLE PERIGEES 
FGE C L A Z X E  C(Ti ,  5 , 5 5 5  !E$, 4,923 KM) . 

Ti = 60, 72, 84 and 96 HR 

At the moon the locations of perisel points of a 
class also form an annular belt, (all points in this 
belt have the same radial distance from the center of 
the moon) as shown in Figure 3. It is also found that 
all transits of a class depart from a point in the de- 
parture belt in a predetermined radial direction. 
(To visualize the transit it is noted that the trajectory 
of a given class  of transits is horizontal at the peri- 
gee belt and the direction of the trajectory is gen- 
erally away from the center of the perigee belt.) 
The arrival at the moon is in a direction generally 
toward the center of the perisel arrival belt. Sub- 
classes or families of trajectories are identified by 

YEP + NYEP 
t 

60 HR 72  HR 

FIGURE 3. SURVEY OF ARRIVAL AREAS AT 
MOON FOR TRANSIT CLASSES C ( 6 0  HR, 

6,555 KM, 1,923 KM) AND C ( 7 2  HR, 
6,555 KM, i ,523 KM) 

considering those transits whose perigees lie within 
the belt width on a line from, the central point in the 
belt. Such a subclass or  family is shown in Figure 4. 

N o o n - E a r t h  P l a n e  

DETAIL A 

ARRIVAL G E O M E T R Y  D E P A R T U R E  G E O M E T R Y  

FIGURE 4. FAMILY OF TRANSITS ENVELOPING 
MOON 

The fixed parameters 01 tne ramiiy art: iiic 
classifying parameters, flight time, radius of peri- 
gee, radius of perisel, and the horizontal path angles 
associated with perigee and perisel. Depending on 
the placement of perigee as stated above and the re- 
maining parameters (velocity magnitude and azi- 
muthal direction) at perigee a family of trajectories 
can envelope the moon from all directions. The tra- 
jectories pass horizontally through the perisel belt 
toward the center of the belt. The region of con- 
vergence of all trajectories of a family near the 
center of the perisel belt is called the vertex and 
this region is small enough to be considered a point. 
The perisel points of the family l ie on a near circu- 
lar locus within the perisel belt for the family class. 
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Each class of transits is in fact composed of such 
families, the perigee belt being composed of the 
perigee line segments and the perisel belt the locus 
of all perisel circles. The vertices of the families 
within a class a l s o  form an annular locus within the 
perisel belt. If the true orientation of the earth's 
and moon's equators is superimposed on the MEP 
system, geographical coordinates can then be used in  
the design of a lunar mission. An example is shown 
graphically in Figure 5. 

E a r t h  - Noon 
A x i s  

( S t a t i o n a r y )  
YEP E q u a t o r  
( S t a t i o n a r y  1 

PERIGEE 
B E L T  

( S T A T I O N A R Y )  

FIGURE 5. DEVELOPMENT OF LAUNCH WINDOW 
BY RELATING TRUE EARTH AXIS AND EQUATOR 

TO MEP-REFERENCE SYSTEM 

Positions A , By and C represent three successive 
times in the day at which launch is considered. The 
belt of perigee points that wi l l  produce a flight of de- 
sired time and close approach distance to the moon is 
indicated. The arrows indicate the spread of launch 
azimuths that are acceptable from range safety con- 
siderations. One must then determine when, if at  all, 
the launch position on the earth is such that the azi- 
muthal aiming direction, and the powered flight cen- 
tral angle will place perigee on the perigee belt with 
proper direction away from the center of the belt. 
One can see that several possibilities for the flight 
may be available in this case, particularly if a park- 
ing orbit is used to extend the arc  of flight (central 
angle) from liftoff to  the perigee of the transit. 

To place perigee of the trajectory on the indicated 
perigee belt with direction away from the center of the 
belt, the flight must pass over the center of the belt. 
The earliest launch time at which this can be done 
while staying within range safety restriction of launch 
azimuth is represented by point A. From this launch 
time the azimuth of launch is at the northern range 
safety l i m i t m d  the central angle of flight to  the peri- 
gee location is SO large that a coast phase in a parking 
orbit will be required to place perigee at the specified 
point. The flight originating at the time represented 
by point B has a much smaller central angle so that 

little or no coast in parking orbit is required. The 
latest time at which launch is possible will occur 
when the central angle from the launch point to the 
perigee belt becomes smaller than the central angle 
of flight with no parking orbit, or when the most 
southerly azimuth acceptable for range safety is 
reached. On Figure 5 the most southerly azimuth 
angle shown at location C does not provide a trajec- 
tory that will pass through the perigee belt and there- 
fore a launch is not possible. 

B. IMAGE TRANSITS IN THE RESTRICTED 
MODEL 

Another feature of the material is that it can 
be readily interpreted for moon-to-earth flights. This 
is possible because of image or reflection principles 
inherent in the restricted three-body model. De- 
tailed explanation of these principles and their appli- 
cation would be too lengthy for this presentation. 
However, a brief explanation of the basic principle 
is in order here because it will be referred to again 
in connection with other projects. 

This principle can be intuitively understood a s  
illustrated in Figure 6. 

Rototinp Reference Frome Inertial Reference F r o m  

4 /y!3/$ 4 

4 Moon's \ f'ath 

Earth Earth 

FIGURE 6. IMAGE OR REFLECTION 

BODY MODEL 
TRAJECTORIES IN THE RESTRICTED THREE- 

Consider the motion of a vehicle toward the moon in 
inertial space as illustrated on the upper left, At the 
s tar t ,  the spacecraft is at point 1 on its path and the 
moon a t  point 1 on its orbit. The moon moves counter- 
clockwise as viewed from the north with successive 
locations of the bodies occurring as indicated by the 
numbers. This motion appears in the rotating frame 
as illustrated at upper right. If such motion, indi- 
cated in the inertial frame, can occur, then the same 
paths of the two bodies can also occur with the reverse  
motion, with the moon's motion clockwise and the 
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vehicle moving toward earth. This is equivalent to 
viewing the motion from the southerly direction. If 
this reverse motion is viewed, however, from what 
would now be the north direction so that the moon's 
motion again appears counterclockwise, the path ap- 
pears as indicated at lower left. This path is clearly 
an image of the first but the motion is from moon to 
earth rather than from earth to moon. 

In the rotating frame illustrated at the lower 
right, the image path is a reflection on the earth-moon 
line of the original path and the direction is reversed. 
Although this explanation has been limited to two di- 
mensions, it can be extended to three dimensions with 
the result that all data concerning earth to moon t ran - 
si ts  can be transformed to represent moon-to-earth 
transits.  

Since Apollo type missions were being considered, 
the flight times concerned with in  the survey a r e  not 
very large.. During such time intervals the moon 
moves only about one seventh of a revolution o r  less 
around the barycenter, and the circular arc repre- 
senting the moon's motion in the model is a sufficient- 
ly accurate approximation of any segment of the true 
more elliptical orbit. The action of the sun's gravity 
over this time period is also negligible for the approx- 
imation desired. One should not infer, however, that 
the restricted problem finds no other application. 
Another of the projects being pursued at  this center 
is the study of periodic orbits in the restricted three- 
body problem. Poincare's justification for the study 
of periodic orbits in the restricted three-body model 
was that such orbits represent one of the very few 
openings to the solution of the restricted problem. 
This fact still provides one point of justification for 
their study. Dr. Arenstorff of the Computation Lab- 
oratory has given an analytic proof for  the existence 
of the periodic orbits even when they encompass both 

from circular. 
e a L - L I 1  " a11u ' 1ll""ll U,,U -.-J &1..-:- u."*- mntinn _*__ __.. i s  highly different 

C. PERIODIC ORBITS 

A systematic generation of periodic orbits on 
the computer has been initiated in an attempt to  un- 
cover a pattern or patterns by which the nature and 
classification of the orbits will be more fully under- 
stood. To generate periodic orbits we again use the 
reflection on the earth-moon line. Because of this 
.reflection, a trajectory that crosses  the earth-moon 
line perpendicular to it will continue with the path 
after the crossing being a reflection of the path before 
the crossing. It follows that if a trajectory has two. 
perpendicular crossings of the earth-moon line it 
closes on itself and is periodic in the rotating system, 

To determine a periodic orbit the calculation is 
started on the earth-moon line with direction perpen- 
dicular to it. Figure 7 shows the trajectory geometry 
that develops for a typical case. 

FIGURE 7. DEVELOPMENT OF PERPENDICULAR 
CROSSING OF EARTH-MOON LINE 

The magnitude of the velocity vector is then adjusted 
until trajectories are generated whose velocity com- 
ponent along the earth-moon line changes direction at 
at given crossing. In Figure 7 the third crossing i s  
chosen. Zero velocity component along the line, a t  
the time of crossing, indicates perpendicular cross-  
ing. The periodic orbit is then determined by isolat- 
ing, within the capability of the computing scheme be- 
ing used, the trajectory with zero velocity along the 
earth-moon line at the time of crossing. The task of 
classifying all orbits is considerably complicated by 
the fact that the o'rbits can have many different basic 
shapes and further that some of these a re  extremely 
complicated shapes. Some examples of the l e s s  com- 
plicated orbit shapes are shown in Figures 8 and 9. 

R o t a t i n g  R e f e r e n c e  Frarnc Inertial  Reference Frame 

a,%@ * Moon's 

Earth 

FIGURE 8. A PERIODIC ORBIT IN THE 
RESTRICTED THREE- BODY MODEL 

In these the orbit i s  shown in both rotating and iner- 
tial coordinates. In the rotating frame the orbit is  
seen looping from the vicinity of earth through space 
with one loop passing around the moon. In the iner- 
tial system the orbit is nearly elliptical with the 
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R o t o t i n q  Rrf t r8 lcr  Frrmr l n t r t i a l  R r f r r r n c r  Frame 

FIGURE 9. A PERIODIC ORBIT IN THE 
RESTRICTED THR E E-BODY MODEL 

ellipse being highly distorted by lunar gravity at 
times when the position of the moon is near that of the 
small body on the orbit. Some examples of the more 
exotic shapes are given in Figures 10 and 11. 

FIGURE 10. A PERIODIC ORBIT IN THE 
RESTRICTED THREE-BODY MODEL 

Another kind of orbit that occurs in the restricted 
model is shown in Figure 12. This kind of orbit, 
called a transition orbit, was discovered by M. C. 
Davidson of Computation Laboratory. This orbit is, 
for  several revolutions, nearly an ellipse about the 
earth. On one revolution, however, the orbit passes 
near the libration point between earth and moon. This 
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FIGURE 11. A PERIODIC ORBIT IN THE 
RESTRICTED THR EE-BODY MODEL 

is a point at which the centrifugal force on a body 
moving with the rotating earth-moon system, com- 
bined with the force of the moon's gravity, is just 
balanced by the force of earth 's  gravity. As it pas- 
ses this point, the orbit is distorted and eventually is 
temporarily captured by the moon. Its motion now 
becomes essentially elliptic around the moon until, 
after several revolutions there,  it comes back to  near 
the libration point and is temporarily recaptured by 
earth. 

FIGURE 12. A TRANSITION ORBIT IN COORDI- 
NATE SYSTEM ROTATING WITH EARTH-MOON 

SYSTEM 

SECT ION I 11.  PER I O D I C  AND NEAR 
PERIODIC ORBIT ,APPLICATIONS 

In general the periodic orbits of the restricted 
model will not reappear a s  periodic orbits if the 
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moon's path is deviated from circular to one more 
representative of i ts  real  path or if the gravitational 
attraction of the sun is introduced in the model. Some 
of them, however, may appear that a re  near periodic 
for at  least a limited time. The possibility of appli- 
cation of the near periodic orbits to many space ex- 
ploration missions gives another justification for the 
study of periodic orbits in the restricted model. Such 
orbits that pass at least a few times near both earth 
and moon have obvious value for photographic mis- 
sions and missions to measure and evaluate the nature 
of the cislunar space. If any of these orbits can be 
maintained over long periods with reasonably small 
orbit correction, they may even be utilized for ferry 
vehicles that shuttle between points close to earth and 
close to the moon during each orbit period and can 
be used by men during the major portion of the tr ip 
from earth to moon and back. 

When an actual mission application is to be con- 
sidered, for which a long period orbit is required o r  
for which the orbit must meet certain specifications 
over long periods of time, the effects of the sun's 
gravity and the elliptical shape of the moon's orbit 
must be considered. Such a mission was recently 
investigated. It was proposed that a Pegasus type 
payload be placed in an orbit that would provide for 
determination of the density of micrometeoroids in 
cislunar space. No midcourse guidance or propulsion 
after insertion w a s  to be provided. With this restric- 
tion it soon becomes apparent that the orbit cannot 
approach very near to the moon and continue on a 
repeating path, due to the varying distance and velo- 
city of moon relative to earth. Therefore it w a s  de- 
cided to study only periodic or near periodic orbits, 
which essentially avoid encounter with the moon. Two 
efforts were made to find orbits to satisfy this and 
similar proposals. The first  effort, done in-house, 
was an investigation of the periodic orbit that passes 
near the earth twice each month making two loops in 
mace with one of these loops encompassing the moon 
as seen in the rotating frame. This is the orbit that 
was shown in Figure 8. We note that although the 
orbit does encompass the moon its  closest approach 
distance to the moon is almost one fourth the earth- 
moon distance. The second effort, which was done 
by Lockheed, was a study of orbits that were near 
periodic and that reached to various distances from 
earth while avoiding the moon as much as possible 
and not looping around the moon. In both these cases 
the problem, then, is to determine what orbits are 
available that will approximately repeat themselves 
in cislunar space over a specified mission duration 
and what opportunities a re  available to launch the 
spacecraft into these orbits. Although the proposed 
orbit layouts avoid encounter of the moon and space- 
craft ,  these very high apogee orbits a re  nevertheless 

highly perturbed by both the moon and sun. These 
perturbations can easily cause the perigee of the 
orbit to decrease so far that the spacecraft will col- 
lide with the earth early in its lifetime, even on its 
first return to earth. 
orientation of the orbit is chosen relative to the 
moon's and sun's positions the perturbations will in- 
crease the perigee radius. It was found that to gain 
an understanding of the perturbations due to sun and 
moon and their positioning relative to the spacecraft, 
the effects of each body had to be studied separately. 

On the other hand, if the proper 

The orbits investigated in the Lockheed effort 
were classified by the ratio of the numbe'r of revolu- 
tions of the moon to the number of revolutions of the 
spacecraft. Four of these are represented in Fig- 
ure 13. Several intermediate ratios not shown here 
were also included. The one-eighth ratio orbit was  
the smallest considered and the one-half ratio the 
largest. 

Eor th  wF7 Rot io  of Period 

RATIO APOGEE PERIGEE VELOCITY 
T y  / T  v - VL 

( h m )  

185.000 

297.000 

362,000 

476.000 - 66 

FIGURE 13. ORBIT TYPES INVESTIGATED 

In both efforts the displacement of perigee due to 
the sun aione was L v u d  IV Le es;~ritk&- c h z t i ~ ~  e! 
only the ratio, and the orientation of the major axis 
of the orbit relative to the direction of the sun. The 
effect of orientation is shown in Figure 14. The orbit 
maintains a nearly space-fixed orientation. The dis- 
placement increases from the time the orbit major 
axis is aligned in the direction of the earth-sun line 
until the major axis i s  perpendicular to the earth-sun 
line. This time interval is one-fourth of a year. Then 
perigee displacement decreases until the major axis 
is again aligned in the earth-sun direction. This 
implies then, that if a flight is initiated with the 
major axis in a similar direction a s  the earth-sun 
line the sun's gravitational perturbation will increase 
the length of the major orbital axis and therefore 
moves the perigee between its initial height and 
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FIGURE 14. NATURE OF SUN'S PERTURBATION 
OF PERIGEE RADIUS AS A FUNCTION OF 

SPACECRAFT ORBIT ORIENTATION 

a definite greater height, On the other hand, if the 
original alignment i s  perpendicular to the earth-sun 
line, the sun's effect produces perigees always lower 
than or equal to the initial perigee height. The effect 
of ratioof theorbit is  shown in Figure 15, where it is 
seen that only the magnitude of the displacement is 
decreased a s  ratio decreases. The position of the 
spacecraft in its orbit at  any time does not greatly 
affect the perturbation history since the direction of 
the sun changes only very little during any one revo- 
lution of the spacecraft in the orbit. 

Rriqea Radius (10'hd 

I I I I I I I 

FIGURE 15. EFFECT OF ORBIT RATIO ON 
SUN'S PERTURBATION OF PERIGEE 

In determining the effects of the moon on the 
spacecraft orbit, both the position of the spacecraft 
at any time relative to the position of the moon and the 
alignment of the spacecraft orbit relative to the major 
axis of the moon's orbit must be considered. As an 

example of this, we refer to the Lockheed effort. By 
the definition of the study, the spacecraft position is 
chosen so a s  to maintain large distances between moon 
and spacecraft. This is done by keeping the major 
axis of the orbit as far  a s  possible from the earth- 
moon line at the times when the spacecraft is at apo- 
gee. Figure 16 illustrates this for two of the ratios 
by indicating the positions of the moon at the times of 
apogee of the spacecraft's orbit. 

I R a t i d  113 
R a t i o  115 

FIGURE 16. ORIENTATION OF ORBIT TO 
MAINTAIN DISTANCE FROM MOON 
(Positions of Moon Indicated a t  Times 

of Spacecraft Apogee) 

The effect of the ellipticity of the moon's orbit 
appears a s  a function of the angle between the major 
axes of the moonls orbit and the spacecraft orbit as 
illustrated in Figure 17. 

FIGURE 17. PRIMARY PARAMETER 
AFFECTING PERTURBATION OF SPACECRAFT 

ORBIT DUE TO ELLIPTICITY OF MOON'S ORBIT 

The change of perigee radius as  a function of the 
angle, e,  is illustrated in Figure 18, for the ratio 
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one-half orbit which avoids the moon. 

Perigee Radius I~o 'km)  

12 

10 

8 

bJ I I I ' I  I I I L 

FIGURE 18. EFFECT OF RELATIVE ORIEN- 
TATION OF MAJOR AXES OF MOON'S ORBIT 

AND SPACECRAFT ORBIT 

It is observed that for this case the lunar per- 
turbation of perigee is generally always upward. The 
magnitude of the perturbation, however, is dependent 
on the angle, 0 ,  #with maximum upward displacement 
of perigee occurring for 0 in the neighborhood of 120 I 

degrees or 300 degrees. 

Once the separate perturbations of the sun and 
the moon are known, the combined effect of the two 
on the spacecraft can be very well approximated by a 
simple addition of the two separate perturbation curves. 

Periqn Radius (IO' km) 
4 

I A Ywn and Sun I 

I I I I I * 
50 100 I50 200 250 

Time in Spacecraft Orbit (days) 

FIGURE 19. COMPARISON OF PERTURBATIONS 

TURBATION BY SUN AND MOON TOGETHER 
BY SUN AND MOON SEPARATELY WITH PER- 

The lower curve in Figure 19 is perigee history with 
only the sun acting on the orbit. The next higher 
curve is perigee history with only the moon acting. 
The third curve is the perigee history due to the actual 
effect of both bodies acting together. I t  is easily seen 
that this curve will be very well  approximated by ad- 
dition of the other two. 

The launch windows for a mission using orbits of 
the type discussed here, then, must be chosen at times 
such that the orientation of the moon's orbit, the 
spacecraft orbit, and the position of the sun will pro- 
duce upward or zero displacement of the perigee over 
the time interval desired. 

SECTION IV. INTERPLANETARY TRANS ITS 

The major effort in astrodynamics research here,  
a s  in the national space program, is in the a reas  of 
lunar and cislunar orbits and the discussion has there- 
fore been devoted primarily to these efforts. Never- 
theless, a great deal of effort has been already made 
and is being continued into the areas  of interplanetary 
trajectory study, and this deserves mention here. A 
"Study of Manned Interplanetary Flyby Missions to 
Mars and Venus" was recently completed by Advanced 
Projects Study Branch. The report contains an "in- 
depth" mission analysis study of manned interplane- 
tary flyby missions Mars or Venus during the 1970s 
using Apollo technology and hardware wherever pos- 
sible. Because the planetary orbits a r e  inclined to the 
earth 's  orbit, even though only by a few degrees,  the 
trajectory geometry changes appreciably over long 
time periods. The time interval that must be studied 
to cover a representative number of all possible Earth- 
Mars transits is about 15 years. The opportunities to  
fly reasonably short flight time, low energy transits 
will occur each 2 . 2  years. Fo r  Earth-to-Venus tran- 
sits the interval to be studied is about 8 years ,  and the 
applicable transit opportunities are avaiiabie each i. 6 
years. Work is being continued to expand the above 
study to complete these cycles. 

Another project now in progress is the study of 
so-called swing-by trajectories for Earth-to-Mars flyby 
transits by way of Venus. This type of transit goes 
first to  the vicinity of Venus, where that planet's 
gravitational attraction is used to turn the trajectory 
to Mars. It offers a s  the main advantage a much lower 
reentry velocity on the return t r ip  to Earth than that 
occurring on a direct flight to Mars.  

These and almost all studies of interplanetary 
flight use a "matched-conic" model to approximate 
the trijectory. This model assumes that flight between 
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two planets can be represented by a combination of 
three segments of conic flight or  flight in a central 
force field. 
sions in Figure 20. 

This model is illustrated in two dimen- 

FIGURE 20. DETERMINATION OF HYPJR- 
BOLIC EXCESS VELOCITY VECTOR, VH 

The trajectory in the region sufficiently distant from 
the planet so that the planet's gravitational attractions 
are negligible is taken to be an ellipse connecting the 
centers of the two planets and having the sun at  one 
focus. The trajectory near the planet then is  taken to 
be a hyperbola with the planet at one focus. It is then 
assumed that, at a distance so f a r  from the planet that 
its gravitational attraction is negligible, the velocity 
vector (vH on Figure 20) on this hyperbola is equal to 
the difference between the velocity vector relative to 
the sun (v 
counter wi& the planet and the velocity vector rela- 
tive to the sun (7, on Figure 20) of the planet a t  that 
time. This vector difference, therefore, is called 
the hyperbolic excess velocity vector and is used to 
define a hyperbola that represents the orbit near the 
planet. 

on Figure 20) of the ellipse at its en- 

The assumptions made in the construction of this 
model may seem rather gross;  however, transits cal- 
culated in this manner a r e  actually remarkably good 
approximations to  the correct solution. On the other 
hand, when detailed study of a specific transit or fam- 
ily of transits i s  needed, for example, to determine 
guidance accuracy requirements to accomplish a mis- 
sion, the exact equations of motion incorporating pre- 
cise representation of the significant solar bodies, 
must be solved. The same is true when final analysis 
of earth-moon flights is necessary. 
36 

SECTION V. PRECISION TRAJECTORY 
PROGRAM 

Neither the representation of the solar system or 
the solution of the equations of motion of a small body 
can be obtained except by numerical methods. The 
problem of assuring accuracy of these numerical so- 
lutions is another area of effort here. Dr. Hans 
Sperling of Aero-Astrodynamics Laboratory is now 
developing a computer program with which we hope 
to be able, to compute realistic trajectories with the 
precision of the computation assured for 12 to  16 
digits even over long transit times. To do this the 
method presently being considered incorporates in- 
tegration of the differential equations of motion for all 
of the bodies to be included in the model a s  wel l  as  
those for the spacecraft. The initial conditions for 
the integration of the equations a re  obtained from the 
best known ephemerides of the solar system. Inte- 
gration of the motion of the model eliminates the prob- 
lems of uncertain e r ro r  magnitude introduced when 
ephemeris data a r e  incorporated into a program by 
numerical interpolations from tabulated data. The en- 
tire system of equations is solved by a numerical inte- 
gration technique using successive power series ex. 
pansions. 

At present these techniques have been employed 
in a computer program which includes four .finite bod- 
ies and one massless body in the model. Three of the 
finite bodies a re  treated a s  point masses or homogen- 
eous spheres. One oblateness term is incorporated 
in the gravitational function for the fourth body. This 
program is  operational and can be used for some ap- 
plications; however, many additional features such a s  
triaxial shape of the moon, more oblateness terms for 
earth,  and radiation pressure from the sun must be 
added to achieve the accuracy necessary for many 
projects. Work is continuing in this direction. 

Only the highlights of the projects discussed were 
given here. Most of the details a re  available in the 
publications mentioned and in other published material 
from the various organizations involved. 

SECT ION VI. FUTURE EFFORTS 

Future problems of astrodynamics include the 
natural continuation of the projects discussed plus 
several  new areas.  
problems a re  those concerning Voyager flights. Con- 
siderable detail$d analysis of trajectory characteristics 
will be required in the layout of the actual flight to be 
chosen. Launch and injection windows will be deter-  
mined, equations of cutoff conditions for the booster 
flight will be required, and methods of midcourse 

Perhaps the most urgent future 
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. correction maneuvers will be formulated. o r  Jupiter-Sun system and thereby forming a round 
trip trajectory that includes several orbits of the 
target planet, has been initiated. Methods of evalu- 
ating the three-body trajectory behavior under the in- 
fluence of perturbations of the solar system a r e  also s 

being continued. 
these will be necessary before large-scale explora- 
tion of the solar system is possible. 

In addition the search for more comprehensive 
description and classification of all orbits in the re- 
stricted three-body model will be continued. Inves- 
tigation of the possibility of utilizing three-body t ra -  
jectory behavior in interplanetary flight, in particular, 
simulating a transition orbit in the Mars-sun system 

The mastery of problems such as 
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UNITS O F  MEASURE 

In a prepared statement presented on August 5 ,  1965, to the 
U. S. House of Representatives Science and Astronautics Committee 
(chaired by George P. Miller of California), the position of the 
National Aeronautics and Space Administrationon Units of Measure 
was stated by Dr. Alfred J. Eggers, Deputy Associate Administrator, 
Office of Advanced Research and Technology: 

"In January of this year NASA directed that the international 
system of units should be considered the preferred system of units, 
and should be employed by the research centers  as the primary 
system in all reports.and publications of a technical nature, except 
where such 'use would reduce the usefulness of &e report  to the 
primary recipients. During the conversion period the use  of cus- 
tomary units in  parentheses following the SI units is permissible, 
but the parenthetical usage of conventional units will be discontinued 
as soon as it is judged that the normal users  of the reports  would 
not be particularly inconvenienced by the exclusive use of SI units. 

The International System of Units (SI Units) has been adopted 
by the U. S. National Bureau of Standards ( see  NBS Technical News 
Bulletin, Vol. 48, No. 4, April 1964)- 

The International System of Un i t s  is tlcfined in NASA SP-7012, 
"The International System of Units,  Physical Constants, and 
Conversion Factors,11 which is available from the U. S. Government 
Printing Office, Washington, D. C. 20402. 

. - - -A .-.*-fnrontiaIIv in this s e r i e s  of research re- SI unit,*: ale urnuu -----.- 

ports  in  accordance with NASA policy and following the practice of 
the National Bureau of Standards. 

. -  _- .. 


